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A continued fraction 2:t~ I (Clk(Z)/Pk(Z)) is said to correspond to the power series
2:;'~ocprp and 2::~1 -cpzP if series expansions of the following form for the
approximants fk(z) of the continued fraction are valid,

Pk
fk(z)- L cpz- P=CZ-(Pk+ 1)+ "',

p~O

"
fk(z) + L c_pzP=dZ"k+ l + "',

p=!

where Ilk> Vk --+ CfJ when k --+ O. We introduce a special class of continued fractions,
Laurent fractions, and show that the concept of correspondence above induces a
one-to-one mapping between all Laurent fractions and all double sequences
{cn:n=O, ±I, ±2, ... } of real numbers satisfying the determinant conditions
H~;;'2m I '" 0, H~;;' ~m[) '" 0, m = 0, I, 2.... (H~P) are the Hankel determinants associated
with the sequence {cn }.) A subclass, the contractive Laurent fractions, is mapped
onto those double sequences which satisfy the conditions H~;;,2ml > 0, H~;;'~? > 0,
m = 0, 1,2.... The double sequences, which in addition to H<£::'I '" 0, H~~mi ",0 also
satisfy the conditions H~;;'2rn1+ [) '" 0, H~;;' 2m + [) '" 0, m = 0, I, 2, ..., are those
associated with general T-fractions (or M-fractions). © 1988 Academic Press, Inc.

INTRODUCTION

Let {Cn:n =0, 1,2, ... } be a sequence of real numbers. The Hankel deter­
minants H~n) are defined for n = 0, 1,2, ... as follows,

Cn Cn + I '" Cn+k-I

H6n ) = 1, H(n)- Cn + I
k -

Cn+k-I ........ Cn + 2k - 2

for k = 1, 2, 3, ....
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When {Cn : n = 0, ± 1, ±2, ... } is a double sequence, the Hankel deter­
minants are defined as above for n = 0, ± 1, ±2, '" .

With a given (simple) sequence {cn} we associate the formal power series
:Lf=ockz-k, and with a given double sequence {cn} we associate the two
formal power series Lf=o CkZ -k and Lf= 1 - CkZk.

A continued fraction

KiXk(Z) = iXl(Z) iX2(Z) iX3(Z)

k=lPk(Z) Pl(Z)+P2(Z)+P3(Z)+

is said to correspond to the series :Lf= 0 CkZ - k at Z = 00 if formal power
series expansions of the following form are valid (we writefk(z) for the kth
approximant of the continued fraction) for every k:

11k
fk(Z)- L cp z- P =CZ-(l1k+ 1J+ "',

p=o

where J1k --+ 00 as k --+ 00. The continued fraction is said to correspond to
the series :Lf=OCkZ-k at Z= 00 and to the series Lf=\ -CkZk at z=O if
formal power series expansions of the following form are valid,

11k
fk(Z)- L cp z- P =cz-(11k+ 1J+ "',

p=o

Vk

fk(Z)+ L: c_ kz P =CZ(vk+l)+ "',
p=l

where J1k --+ 00, Vk --+ 00 as k --+ 00.

A modified regular C-fraction is a continued fraction of the form

a\ a2 a3 a4
- - - -
l+z+1+z+

for k = 1, 2, ....

It is called a modified Stieltjes fraction if ak > 0 for k = 1, 2, ....
A l-fraction is a continued fraction of the form

glZ g2 g3-- -- --
z+h\-z+h2-z+h3-

for k= 1, 2, ....

Fk #0, Gk#O for k= 1; 2, ....

It is called a real l-fraction if gk > 0 for k = 1, 2, ....
By a general T-fraction we mean a continued fraction of the form

F1z F2z F3z

1+G1z+ 1+G2z+ 1+G3z+

It is called a positive T-fraction if Fk > 0, Gk > 0 for k = 1, 2, ....
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For more details on these concepts see, e.g., [5].
It is well known that the concept of correspondence at z = 00 induces

a one-to-one mapping between all modified regular C-fractions and all
(simple) sequences {c n } satisfying the condition

HP) =10, for k = 0, 1, 2, ....

The modified Stieltjes fractions are mapped onto the sequences where
HI?) >°and ( - 1)kHI}) > 0.

More generally this concept of correspondence induces a one-to-one
mapping between all J-fractions and all (simple) sequences satisfying the
condition

for k = 0, 1, 2, ....

The real J-fractions are mapped onto the sequences where H1°) > 0. A real
J·fraction is the even part of a modified regular C-fraction iff also H11

) =I°
in the corresponding sequence and of a modified Stieltjes fraction iff also
H11

) > 0. (For the concept of the even part of a continued fraction see, e.g.,
[5, p.38--41].)

For more details on these correspondence results see, e.g., [1,5, 12].
More recently it has become known that the concept of correspondence

at z = 00 and at z = °induces a one-to-one mapping between all general
T-fractions and all double sequences {cn } satisfying the condition
H};;,2m) =I 0, H};;,~ml) =I 0, H};;,2m + I) =I 0, H};;,=-ml+ I) =I°for m =0, 1,2, .... The
positive T-fractions are mapped onto the sequences where H};;,2m) > 0,
H};;' ~ml) > 0, H};;' 2m + I) > 0, H};;' =-'1+ I) < 0.

Correspondence results for general T-fractions can also be formulated in
terms of the closely related M-fractions

FI F2 z F3 z
1+G1z + 1+G2 z + 1+ G3 z +

introduced in [7,8]. For these correspondence results at z = 00 and at
z = Osee [4,5,6, 7, 8].

In this paper we show that the concept of correspondence at z = 00 and
at z = °more generally induces a one-to-one mapping between a class of
continued fractions called Laurent fractions (for definition see Section 1)
and all double sequences {cn} satisfying the condition

for m = 0, 1, 2, ....

A special class of Laurent fractions called contractive Laurent fractions (for
definition see Section 1) is mapped onto the class of those sequences where
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Hi;;,Zm) > 0, Hi;;,~~) > 0. A contractive Laurent fraction is then equivalent
with a general T-fraction iff also Hi;;,Zm+I) #0, Hi;;,~ml+I)#O in the
corresponding double sequence, and with a positive T-fraction iff also
Hi;;,Zm+ I) > 0, Hi;;,~ml+ I) < 0. (For the concept of equivalence of continued
fractions see, e.g., [5, p. 31].) The general T-fractions where H~;;,Zm»o,

H(~Zm»o H(~Zm+I).J-O H(~Zm+l).J-O are the APT-firactions (charac-Zm+1 'Zm -r, Zm-I -r
terized by FZm-IFzm > 0, FZm~ 1GZm - 1 > 0) studied in [2].

The contractive Laurent fractions are connected with orthogonal
Laurent polynomials (see [3,9]). The relationship is as follows. Let Rn(z)
be the monic orthogonal Laurent polynomials determined by the
functional rJ), where rJ)Cf,,!~p r;zi) = L'!~p ric;. Let Bk(z) be the
denominators of the Laurent fraction corresponding to the series
L':~o cpz- P, L':~ 1 -Cpz P• Then Rnk(z) = Bk(z) for every non-singular
index nk' When nk+ 1 is singular and nk+ 1 = 2m, then Rzm(z)=k·zBk(z).
When nk+ 1 is singular and nk+ 1=2m+ 1, then RZm+I(Z)=k'·z~IBk(Z).

(These results follows from recursion formulas in [9].)
Orthogonal Laurent polynomials can be used to solve the strong Ham­

burger moment problem (see [3, 9]). In a forthcoming paper it will be
shown that the problem also can be solved by the use of contractive
Laurent fractions (see [10]). It has earlier been shown that the problem
can be solved by APT-fractions in the nonsingular case (see [2]).

The idea of generalizing M-fractions or general T-fractions to obtain
results on the strong Hamburger moment problem has also been utilized
in [11].

For definitions and basic properties concerning continued fractions we
refer to [5].

1. LAURENT FRACTIONS

Let S be a subsequence of the sequence N = {O, 1, 2, 3, ... } of non­
negative integers, with the property that no two consecutive elements of N
belong to S. We shall call the elements of S singular indices, and the
elements of N - S non-singular indices. We shall denote by T the set of all
triples of consecutive non-singular indices (i.e., triples of non-singular
indices where there are no non-singular indices in between).

We define for every non-singular index n an ordered pair
(an, bn) = (an(z), bn(z)) (where z is an arbitrary index n an ordered number
different from zero) in the following way:

LJ • For every non-singular index n there is given a real number
Vn # 0, and Vo = 1.
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Ln. For every non-singular index n there is given a real number q",
where qo = 0, q" i= 0 for n i= O.

Lm. For every singular index n there is a given real number w".

The complex numbers a", b" are given as follows:

L I . aZm = qZm' bzm = VZm + (l/V Zm - d z, when (2m, 2m - 1,
2m-2)E T.

L z· aZm = qZmz, bzm = V2m + (l/V Zm - d z, when (2m, 2m - 1,
2m-3)ET.

L3 . aZm= qZm' bzm = (VZm/VZm-Z) Z-I +WZm-1 +z, when (2m, 2m - 2,
2m-4)E T.

L4 · azm=qzmz, bZm=(vZm/vzm_Z)z-l+wzm_I+Z, when (2m,
2m - 2, 2m - 3) E T.

Ls. azm+l=qzm+I' bZm+I=(l/vzm)z-l+vZm+l> when (2m+1, 2m,
2m-1)E T.

L6 · azm+l=qzm+lz- l, bzm+I=(1/vzm)z-l+vZm+l' when (2m + 1,
2m, 2m - 2) E T.

L7 • aZm +l = qZm+l, bZm +J = Z-I+ wZm + (VZm+J!VZm-l)z, when
(2m + 1, 2m - 1, 2m - 3) E T.

Lg • aZm+l=qzm+lz- l, bzm+I=Z-I+wZm+(vzm+J!vzm_dz, when
(2m+ 1, 2m-I, 2m-2)E T.

(We consider n= -1 as a non-singular index in these formulas).
Let {nk: k = 0, 1, 2, ... } = N - S be the sequence of non-singular indices.

We shall write ~k = QAz) =O"k(Z), 13k = I3k(Z) = b"k(Z) for k = 1, 2, 3, .... We
note that ~k ¥ °for every k. Therefore {(~k' 13k): k = 1, 2 ... } is the sequence
of elements of a continued fraction Kk'= I (a.k(z)/l3k(z», A continued fraction
obtained in this way is called a Laurent fraction. We shall call a Laurent
fraction non-singular if all indices are non-singular.

Let Ak(z) and Bk(z) denote the numerator and denominator of the kth
approximantfk(z) of this continued fraction. Then Ak(z) and Bk(z) satisfy
the following recursion formulas:

Ak=l3k Ak-1 +~kAk-Z

Bk= PkBk-1 + ~kBk-Z

for k= 1, 2, , A_I = 1, Ao=O,

for k= 1, 2, , B_ 1 =0, Bo= 1.
(1.1 )

We note that Al =ql> B I =Z-I +v I if nl = 1 (in view of Ls and R), while
Al = q2Z, BI =V2Z-1 + WI + z if n l =2 (in view of L4 and R).
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THEOREM 1. The functions Ak and Bk are of the form

m

Ak(z) L a2m,i zi,
i~ -em-I)

m

Bk(z) = L b2m,iZi,
i= -m

m

Ak(z) = L a2m+ Li Zi,
i= -m

b2m,m = 1, b2m, -m = v2m , when nk = 2m,

m

Bk(z) = L b2m +l,i z i,
i= -(m+l)

b2m +I, -(m+ I) = 1, b2m +Lm = V2m+ I'

when nk =2m+ 1.

Proof The result follows by induction from LI-Lg and R. I

We note that we may write Ak(z) =Il2m _l(z)/zm-l, Bk(z) =Il2m(z)/zm
when nk =2m, Ak(z) =Il2m(z)/zm, Bk(z) =Il2m +I(z)/zm + I when nk=
2m + 1. Here Ilr is a polynomial of degree at most equal to r.

A Laurent fraction shall be called contractive (because of mapping
properties of the associated linear fractional transformations) when the
following extra conditions are satisfied:

Co' Vn - I 'V n + 1 <0

C I · q2m' V2m' V2m-I>0

C2 • Q2m' V2m<0

C3 • Q2m <0

C4 · Q2m' V2m<0

C s· Q2m+I'V2m+1 ,v2m >0

C6 · Q2m+1 'V2m +1<0

C 7 • Q2m+I<0

Cg • Q2m+1 'V2m+1 <0

when n is singular,

when (2m, 2m - 1, 2m - 2) E T,

when (2m, 2m -1, 2m - 3) E T,

when (2m, 2m-2, 2m-4)E T,

when (2m, 2m - 2, 2m - 3) E T,

when (2m + 1, 2m, 2m -1)E T,

when (2m + 1, 2m, 2m - 2) E T,

when (2m+ 1, 2m-I, 2m - 3)E T,

when (2m+ 1, 2m-I, 2m-2)E T.

2. CONNECTION WITH GENERAL T- FRACTIONS

By a general T-fraction we shall here mean an continued fraction

where Fk#O, Gk#O, k= 1, 2, 3, .... (2.1)
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(Note that in [4, 5] the condition Gk # 0 is not included in the definition of
a general T-fraction.)

By an APT-fraction we mean a general T-fraction where

F2m-IG2m-l>0, m= 1,2, .... (2.2)

THEOREM 2. There is a one-to-one correspondence between non-singular
Laurent fractions and equivalent general T-fractions, given by the formulas

or inversely

q2m= G G'2m-12m

(2.3)

(2.4)

The contractive non-singular Laurent fractions correspond exactly to the
APT-fractions.

Proof Let Dn(z) and En(z) be the numerators and denominators of the
general T-fraction K:=I(Fn·z)j(l + Gn·z). Then Dn(z) and En(z) satisfy the
recursion formulas

Dn(z) = (1 + Gnz) Dn_l(z) + FnzDn_ 2(z),

En(z) = (1 + Gnz) En_l(z) + FnzEn_ 2(z),

n=1,2, ...,D_ 1=1, D1=0,

n= 1, ..., E_ 1 =0, Eo= 1.

(2.5)

We obtain a non-singular Laurent fraction K:=I (an(z)jbn(z)) by defining
an(z) and bn(z) through (2.4), L1 , and Ls. We observe that the func­
tions A 2m(z) = v2mz-mD2m(Z), B2m(z) = v2mz-mE2m(Z), A 2m +I(Z) = z-(m+ I)

D2m + 1(z), B2m + 1(z) = z - (m + I)E2m + 1(z) satisfy the recursion formulas
(1.1). Hence An(z) and Bn(z) are numerators and denominators of
K:=I(an(z)jbn(z)). Obviously An(z)jBn(z) = Dn(z)jEn(z), and consequently
the two continued fractions are equivalent. Conversely for a given non­
singular Laurent fraction an equivalent general T-fraction can be obtained
by defining Fn and Gn by (2.3). Clearly the correspondence is one-to-one.
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From (2.3) is obtained

OLAV NJASTAD

and conversely from (2.4) is obtained

It follows that conditions C 1 and Cs are satisfied for all m if and only if
condition (2.2) is satisfied for all m. There are no non-singular indices in
this situation, so Co is always satisfied. I

3. LAURENT SERIES CORRESPONDING

TO GIVEN LAURENT FRACTIONS

We shall define correspondence between a Laurent fraction
Kk~ 1 (ak(z)/Pk(Z)) and two series, namely with the series L;'~ 1 cpz-P at
infinity and with the series L;'~ 1 - Cpz P at the origin. Equivalently
we shall talk of correspondence with a formal Laurent series
Q::;'=oCpZ-P+L;'~1 -cpzP). Formal Laurent series are called simply
Laurent series in the following. We denote the coefficients of zP for
p = 1, 2,... by - C P in order to get conditions that are easily stated in
terms of Hankel determinants.

We say that the Laurent fraction Kk~ 1 (ak(z)/Pk(Z)) corresponds to
the Laurent series L;'=o cpz- p+ L;'= 1 -cpzP if (for every k) formal
power series expansions of the following forms are valid (we write fk(z) for
Ak(z)/Bk(z)),

fk(z) + [c_1z+ +C_VkZVk]=CZVk+l+ "',

fk(z) - [co + CIZ- 1+ + C!'kZ-!'k] = CZ-(!'k+ I) + "',

where Vk-+k~oo 00, J1.k-+k~oo 00.

LEMMA 1. For every k the product a l .. • ak + 1 has the following form
(where C denotes constants different from zero):
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1X1"'lXk+I=C when nk = 2m, nk + I = 2m + 1, (3.1 )

IX] '''lXk+] =cz when nk=2m, nk+1 =2m+2, (3.2)

1X1" 'lXk+1 =c when nk=2m+ 1, nk+1 =2m+2, (3.3)

IX I "'lXk + 1=CZ~I when nk = 2m + 1, nk+ I = 2m + 3. (3.4 )

Proof We note that 1X]=ql if nl =l, IXI=qlz if nl =2. Assume that
IX I ... IXk + I has the form stated for k ~ h. By combining this assumption
with the various forms of IX h + 2 according to L I-L8 , we obtain the desired
form of IX I ... IX h + 2' So the result follows. I

THEOREM 3. The Laurent fraction Kk= I (lXk(z)/lh(z)) corresponds to a
unique Laurent series L;'~o cpz -p +L;'= 1 - c _pzP. For each k the following
formulas hold (where c denotes constants different from zero):

= CZ 2m
+

1 + "', when nk = 2m, (3.5)

= CZ 2m +2+ "', when nk = 2m, nk+ 1 = 2m + 2, (3.6)

fk(z) + [C_IZ+ ... +C_(2m+llz2m+l]

=CZ2m +2+ "', when nk=2m+ 1,

fk(z)-[co+'" +C2m_I Z-(2m-l)]

(3.7)

=CZ- 2m + "', when nk= 2m, (3.8)

fk(z) - [co + ... + C2m z - 2m ]

= cz-(2m+ I) + "', when nk = 2m + 1,

fk(z)-[co+'" +C2m+IZ-(2m+l)]

(3.9)

when nk = 2m + 1, nk + 1 = 2m + 3. (3.10)

Proof We write LI(z) for the expression Ak+ ](z)/Bk+](z) - Ak(z)/Bk(z).
The well-known determinant formula for continued fractions (see, e.g.,
[5]) gives

(3.11 )

Taking into account the form of Bk(z) given in Theorem 1 and the results
of Lemma 1, we obtain
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A(z) = CZ 2m +1+ "', when nk = 2m, nk+ I= 2m + 1,

A(z) = cz2m +2+ "', when nk=2m, nk+1= 2m + 2,

when nk = 2m + 1, nk+ 1= 2m + 2, and

when nk = 2m + 1, nk+ 1= 2m + 3,

A(z) = cz- 2m + "', when nk = 2m, nk+1= 2m + 1, and

when nk = 2m, nk+1= 2m + 2,

A(z)=cz-(2m+l)+ "', when nk = 2m + 1, nk+ I= 2m + 2,

A(z)=cz~(2m+2)+ "', when nk = 2m + 1, nk+1= 2m + 3.

We define cp and - cp as the coefficients of the appropriate power series
expansions for Ak(z)/Bk(z) for sufficiently large k. Then the formulas of
Theorem 3, and hence the desired correspondence, follow. The uniqueness
of the correesponding series is immediate. I

4. HANKEL DETERMINANTS OF
THE COORESPONDING LAURENT SERIES

We shall develop conditions for a Laurent series to correspond to a
Laurent fraction. In this section we assume that the fraction
Kk=1 (a.k(z)/Ih(z)) corresponds to the series L:;'=ocpz-P+L:;'=I -cpzP.
Let notations be as before. We write 1T.k for the product (-l)ka.l(Z)··· a.k(Z)
and note that 1T.k*0 for k = 1, 2, .... We recall that b2m.-m *0, b2m +I.m *0
(by Theorem 1). We shall in the following simplify the notations for the
Hankel determinants H~p) (see Introduction) and write H: for H~p). We
shall have occasion to use repeatedly the Jacobi identity

(HP)2 _ Hp-IHP+ 1+ HP-I HP+ 1= 0
q q q q+l q-l

(see, e.g., [5]).
For reference we list a few special cases:

(4.1 )

(HiJ~ml+ 1»)2 - HiJ~ml+2)Hz,!':.1 + HiJim2+2lHz,!m = 0, (4.2)

(HiJ2m-l l)2 - Hi,;mHi,;,2m-2) + Hz,!':. 1 HiJ=-ml-2) = 0, (4.3)

(Hz,!mf - HiJ2m+ IlHiJ2m~ I) + HiJiml+ I)HiJ=-ml-l) = 0, (4.4)

(Hz,!':.lf - Hi,;,~ml+ I)Hi,;,=-ml-l) + Hi,;,~m/ I)Hi,;,2m- J) = O. (4.5)

PROPOSITION 1. Let nk = 2m, nk+ 1 = 2m + 1. Then
1T.k+IHim2m, Hi';':. I = -(1T.k+l/(b2m,-m ·b2m +l,m)) HiJ 2m

-J).

H-(2m+l) -2m+l -
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Proof The determinants formula (3.11) implies that Ak(z)/Bk(z) =
A k+l(z)/Bk+ 1(Z) + 7tk+ l/(Bk(z) Bk+ 1(z», hence by Theorem 3 we obtain

Ak(z)= -Bk(z)[c_Iz+ ... +C_(2m+l)z2m+l] +7tk+IZm+1 + ... , (4.6)

Ak(z)=Bk(z)[cO+ .,. +C2mz-2m]+7tk+lb2m+l.mZ-m+ ... , (4.7)

where 7tk+ I by (3.1) (Lemma 1) is a constant.
Comparison of coefficients for z-(m~ Il, ..., zm in (4.6) gives

c-Ib2m,~m = -a2m,-(m-I)'

(4.8)

Similarly comparison of coefficients for z-(m-I), ..., zm in (4.7) gives

cOb2m,_(m_I)+ ... +C2m-l· 1 =a2m,-(m-I)'

co·1 = a2m,m'

Addition of these equations gives

(4.9)

C-2mb2m,-m+'" +co·1

b

=0,

(4.10)

Comparison of coefficients for zm + 1 in (4.6) and for z - m in (4.7) gives

(4.11 )

(4.12)

Straightforward calculation, applying Cramer's rule to (4.10), and using
(4.11) gives

C-(2m+l) C_I
H-(2m+l)_

2m+l -

2m+ I

= L (-1)jc_ j

j=1

C-2m
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2m+1 C-2m Co

= - L C-j
j~1

C-I C2m-1

2m+ I

-" H- 2m b- L. C_j 2m 2m,m+l-j
j~1

= Him
2m

, [C-(2m+l)b2m,_m+ .. , +c_I·l]=1tk+IHim2m.

Similarly by applying Cramer's rule to (4.10) and using (4.12) we obtain
C- 2m

Co

Him
2
':1 =

Co C2m

2m

= L (-I)H ICj
j=O

C-2m

C -(2m-I) Co

2m
= " _C_j -b . H-(2m-l)

.L. b _ 2m,J-m 2m
J~O 2m, m

1
- H-(2m-I)[cb +"'+C2m. 1]--b-- 2m 0 2m,-m

2m,-m

- 1t k+ I H-(2m-l) I
b b 2m'

2m,-m 2m+I,m

PROPOSITION 2, Let nk = 2m, nk+ I = 2m + 2. Then Hi';':.1 =
-IH-2mH-(2m+2)_ « -I)/(b b ))H-2m

- 1tk+IZ 2m' 2m+1 - - 1tk + I Z 2m,-m' 2m+2,-(m+l) 2m'

Hi,;,~ml+l) = 0, Hi..!.~ml+2)Hi';':.1 = Hi';':.i2lHim2m, Hi,;,~"'-z+llHim2m-1)=

(Hi';':.d
2

.

Proof From (3.11) and Theorem 3 we obtain

Ak(z) = Bk(z)[cO+ ... +C2m+IZ-(2m+I)]+(1tk+IZ-I)Z-m+

where 1tk + IZ-I is a constant by (3.2) (Lemma 1),

(4.13 )

(4.14)
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Comparison of coefficients for z - (m - IJ, ... , zm + I in (4.13) and (4.14) and
addition gives

C_(2m+l)b2m,-m+ ... +c_ I ·1=0,
(4.15)

c_ Ib2m,-m+ ... +C2m_I· 1=0,

while comparison of coefficients for zm+2 in (4.13) and for z-m in (4.14)
gives

1tk+ IZ-I
C-(2m+2)b 2m,-m+ .. , +c-2· 1=b '

2m + 2, -(m+ I)

cOb2m.-m+ .. · +C2m·1= - 1tk+IZ- I.

(4.16 )

(4.17)

By applying Cramer's rule to the system (4.15) with the first row removed
and using (4.17) we obtain in the same way as in the proof of Proposition 1
the equality H;;'!;.I= -(1tk+IZ-I)H;;m, Similarly by applying Cramer's
rule to (4.15) with the last row removed and using (4.16) we obtain
Hi,;,~ml+2)= -((1tk+ IZ-I )/(b2m• -m' b2m +2,-(m+ I»)) H;;m, Since (4.15) has
a nontrivial solution we immediately conclude that H2,;,~ml+ I) = O. Finally
the equalities H:i,;,~ml+ 2lH~: + I = H;;,~m2+2lHi,;m, H;;'~i+ IlH;;,2m-l) =
(Him2'!;.lf follow from (4.2) and (4.5). I

PROPOSITION 3. Let nk = 2m - 1, nk+ I = 2m. Then H;;,2m-l) =
1tk+ I Hi,;,"'-12), H;;m = (-1tk+ 1/(b2m - I,m-1 b2m,-m)) Hi,;,=-ml-l).

Proof From (3.11) and Theorem 3 we obtain

Ak(z) = -Bk(z)(c _IZ + ... + C2mz2m] + b
1tk

+I zm + "', (4.18)
2m.-m

Ak(z)=Bk(z)[co+'" +C2m_IZ-(2m-I)]+1tk+IZ-m+ "', (4.19)

where 1tk+1 is a constant by (3.3) (Lemma 1).
Comparison of coefficients for z-(m-l), ..., zm-I in (4.18) and (4.19) and

addition give

C_(2m_I)·1+ .. · + co·b2m - l ,m-1 =0,

(4,20)

c_ I ·1 + '" +C2m-2· b2m-I,m-I=0.

Similarly comparison of coefficients for zm in (4.18) and for z-m in (4.19)
give
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1 b
1tk+1c 2 '+"'+C 1 ' 2 =---- m - m,m-I b '
2m.-m

(4.21 )

(4.22)

By applying (4.20) and (4.22) as in the proof of Proposition 1 we get
H im2(2m - I) = 1tk + I H i~=-ml- 2), while similarly applying (4.20) and (4.21) we
get H;;m = (-1tk+ 1/(b2m-l.m-Ib2m. -m)) Hi~=-ml-l)· I

PROPOSITION 4. nk = 2m - 1, nk + I = 2m + 1. Then Hi,;m =

( 1t z) H-(2m-2) H-(2m-2) (( )/(b b)) H-(2m-l)
k+1 2m-I' 2m = 1tk + I Z 2m-I,m-I' 2m+l,m 2m-I ,

H-(2m-l) = 0 H- 2mH-(2m-2) = H-2m H-(2m--2) H-(2m+ I)H-(2m-l) _
2m , 2m 2m 2m+l 2m-I' 2m+1 2m-I -

(H;;m)2.

Proof From (3.11) and Theorem 3 we obtain

Ak(z)= -Bk(z)[c_Iz+ .. · +C_(2m+l)z2m+I]+(1tk+IZ)Zm+ "',

A () B ( )[
-2m] 1tk+ IZ -(m+ I)

kZ = kZ CO+"'+C2mZ + Z +"',
b 2m + l ,m

(4.23)

(4.24)

where 1tk+IZ is a constant by (3.4).
Comparison of coefficients for Z -m, ... , zm - I in (4.23) and (4.24) and

addition gives

C -(2m-I)' 1+ ... + c Ob 2m - l ,m-1 = 0,

(4.25)

while comparison of coefficients for Z - (m + I) in (4.24) and for zm in (4.23)
gives

C -2m' 1+ ... + C-lb2m - l ,m-1 = 1tk+ IZ,

(4.26)

(4.27)

By applying (4.25) and (4.27) as in the proof of Proposition 3 we obtain
Hi,;m = (1tk+ IZ) Hi.J=-ml-2). Similarly by applying (4.25) and (4.26) we
obtain Hi.J 2m - 2) = ((1tk+ lz)/(b2m-l,m-lb2m+ I,m)) Hi.J~I-I). Also from
(4.25) be get the equality Hi~2m-I)=0. The equalities Hi,;mHi~2m-2)=

H- 2m H-(2m-2) and H-(2m+ I)H-(2m-l) = (H- 2m)2 follow from (4.3) and
2m+12m-1 2m+1 2m-12m

(4.4). I
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THEOREM 4. Let the Laurent fraction Kk~ I (CXk(Z)/f3k(Z)) correspond to
the Laurent series L;'=o cpz- p+L;'= I -cpzP• Then the following
statements hold:

A. Hi,;m 1= 0, Hi,;':'-I 1= 0 for all m = 0, 1,2, ....
B. Hi,pm-I) 1= 0 if and only if 2m is non-singular, Hi';'~ml+ I) 1= 0 if and

only if 2m + 1 is non-singular.

C. If nk =2m then

1
Bk(z)=-­H- 2m2m

ifnk = 2m + 1 then

C-2m C-l
Z-m

,
C2m - 1

Zm

-1
B (Z)=--

k H- 2m2m+ I

C -(2m+ I)
Z-(m+l)

Proof A and B. We note that fl(z)=qt!(z-l+ vl ) if nl=1,
fl(z)=(q2z)/(v2z-l+wl+z) if n l =2 (see Section 1). It follows by
Theorem 3 that Co 1= 0 and thus H? 1= O. Similarly C-I 1= 0 and thus Hi l 1= 0
if n1 = 1, while CI = 0, C2 1= 0 and hence Hi l = 0, Hi 21= 0, Hi l 1= 0 if nl = 2.

Now we assume that the statement on the Hankel determinants are true
for all k~h, where nh=2m or nh=2m-1.

(i) Let nh= 2m, nh + 1 = 2m + 1. Then by assumption H;;m 1= 0
and Hi';'2m-l) 1=0. It follows from Proposition 1 that H:;,;':'-I1=O,
Hi';'~ml+ I) 1= O.

(ii) Let nh=2m, nh+I=2m+2. Then by assumption H;,,2m1=O
and Hi';'2m - I) 1= O. It follows from Proposition 2 that H :;,;':'- I 1= 0,
H:;,;.~ml+I)=O, Hi,;.~ml+2)1=0, hence H:;,;.~m/2)1=0 and H:;';'~m2+1)1=0.

(iii) Let nh= 2m -1, nh+ I = 2m. Then by assumption H:;,;.~ml-I)

1= 0 and H:;';'~ml-2) 1= O. It follows from Proposition 3 that H:;';'2m-l) 1= 0,
H:;,;m 1= O.

(iv) Let nh = 2m -1, nh+ I = 2m + 1. Then by assumption H:;';'~ml-I)

1=0 and Hi,;.~ml-2)1=0. It follows from Proposition 4 that H;;m1=O,
Hi';'2m-l) =0, H:;';'2m-2) 1=0, hence H:;mO::I 1=0 and H:;,;.~ml+I)1=O.

The statements of A and B now follow by induction.

C. Expansion of the determinants after the last column and com­
parison with (4.10), (4.15), (4.20), and (4.25) give the form of Bk(z). I

640/55/2-2
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5. THE LAURENT FRACTION EXPRESSED

IN TERMS OF THE CORRESPONDING SERIES

Also in this section we assume that the fraction Kf=1 (!Xk(Z)/Pk(Z»
corresponds to the series L;'=o cpz-

p+ L;'= I -cpzP
• Our next task is to

express the elements of the continued fraction in terms of the coefficients of
the series.

From the form of Bk(z) given in Theorem 4 (or directly from Eqs. (4.10),
(4.15), (4.20), and (4.25» we find the following expressions for b2m,-m,

b2m.2m-I' b2m +l. m ' b2m +l.- m :

where

H-(2m-l)
b 2m

2m, -m = ----'''''H'----::"2-'
2m

H-(2m+ I)
b 2m+1

2m+ I.m = - H-2m '
2m+1

M- 2m
b 2m

2m,m-1 = H- 2m'
2m

N-(2m+ I)
b 2m+1

2m+I.-m= - H-2m
2m+1

(5.1 )

M - 2m­
2m -

C-2m C -I C -(2m+l) C -I

N-(2m+I)-
C -(2m-I) C I (5.2)

C2m-3
2m+1 -

C2m-1 Co C2m

THEOREM 5. Let Kf= I (!Xk(ZVPk(Z» correspond to I;,=o cpz-
p+

L;'~I -cpz P• Then the coefficients qn in !Xk(Z) be expressed as follows:

H i:/-2- 2lHi,pm - I)
in case L I , (5.3)

q2m = - H-(2m-I)H-(2m-2)
2m-1 2m-1

H-(2m-I)H-(2m-4)

(5.4 )2m 2m-3 in case L 2,q2m = - H-(2m-2)H-(2m-2)
2m-1 2m-2

H-(2m-2)H-(2m-4)

(5.5)2m-1 2m-4 in case L 3 ,q2m = - H-(2m-2)H-(2m-4)
2m-2 2m-3

H-(2m- 2)H-(2m-4)

(5.6)2m-1 2m-3 in case L 4 ,q2m = H-(2m-2)H-(2m-3)
2m-2 2m-2

q2m+ 1= -
Hi~~ml+ I)Hi~~ml-2)

in case L s , (5.7)
Him2mHi~2m-l)

H~~I+ I)H~=-m2-2)
in case L 6 , (5.8)q2m+ 1=

H~mHi~2tn1-2)
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in case L 7 ,

in case L g •

(5.9)

(5.10)

Proof In the cases LI-L g the coefficient qn can be written as
(1) q2m = -1Ck+ dTrk' (2) q2m = - 1Ck+ Ilz1Cb (3) q2m = -1Ck+ II1C k,
(4) q2m = -Z-LTrk +111C k> (5) q2m+ 1= - 1Ck+ 1/1C k> (6) q2m+ I = 1Ck+tlz- I1C k>

(7) q2m+1 = -Trk+l/ltb (8) q2m+1 = -zltk+dTrk' (Here nk+1 = 2m,
nk+ I = 2m + 1, respectively). Substitution for Trk+ I' Itk by those expressions
in the appropriate propositions in Section 4 that to not contain coefficients
of Bk lead to the desired formulas. I

THEOREM 6. The expressions V2m , v2m+ I occurring in the elements Pk(Z)
are given by

(5.11 )
H-(2m+ I)

2m+ I
V2m+I=- H- 2m .

2m+ I

H-(2m-l)
2m

v2m = H-2m '
2m

Proof This follows immediately from Theorem 1 and formulas B. I

THEOREM 7. The expressions W2m , w2m-1 occurring in the elements Pk(Z)
are given by

in case L 3 (5.12)

M-2m M-(Zm-2) H-(2m-2)H-(Zm-3)
W =~ - Zm-Z + Zm-I Zm-3 in case L 4 (5.13)

2m-I H-Zm H-(Zm-Z) H-(Zm-2)H-(Zm-3)
2m Zm-2 Zm-2 2m-z
N-(Zm+ I) N-(Zm-I)

W = - Zm+1 + Zm-I in case L 7 (5.14)2m H-Zm H-(2m-2)
zm+1 Zm-I

Proof (Case L 3 ). Comparison of coefficients for zm - 1 in the
recursion formula BZm(z) = «VZm!VZm_z) Z-I + WZm_ 1+ z) Bzm - z(z) +
qZm BZm-4(Z) gives WZm- 1=b2m,m-l-bzm_2,m_2, and the result follows
from (5.1).

(Case L4 ). Comparison of coefficients for zm - 1 in the recursion
formula Bzm(z) = «v2mlvzm-z) Z-I + W2m _ 1+ z) B2m - Z(z) + qZm zBZm_3(Z)
gives WZm - 1= bZm,m-1 - b2m - z,m-z - qZmbZm-3,m-z, and the result follows
from (5.1) and (5.6) (Theorem 5).
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(Case L7 ). Comparison of coefficients for z ~m in the recursion for­
mula B2m +I(z) = (Z-I + W2m + (v2m +dV2m~ dz) B2m _ I(Z) + q2m + IB2m - 3(Z)
gives w2m=b2m+l,m-b2m-I.~(m-I)' and the result follows from (5.1).

(Case Ls). Comparison of coefficients for z-m in the recursion formula
B2m +I(Z) = (Z-I + W2m + (V2m+ I/V2m-I)Z) B2m _ I(Z) + q2m+ IZ- IB2m _ 2(Z)
gives W2m =b2m +I, -m -b2m - l,-(m-I) - q2m+ Ib 2m - 2, -(m-I), and the result
follows from (5.1) and (5.10) (Theorem 5). I

6. LAURENT FRACTIONS CORRESPONDING

TO GIVEN LAURENT SERIES

We have shown that to every Laurent fraction there corresponds a uni­
que Laurent series :L;'~o cpz-P+ 2:.;'= I -c _pzP, and this series satisfies the
conditions H;;m =F 0, H:;,;,,; I =F 0, m = 0, 1,2, .... A series which satisfies
these conditions is called definite. We shall now show that to every definite
Laurent series there corresponds a Laurent fraction.

THEOREM 8. Let a definite Laurent series 2:.;'=0 cpz-p+ :L;,= I -cpz-P

be given. Then there exists a unique Laurent fraction Kk~1 (cxk(Z)/Pk(Z))
corresponding to the series. An index 2m is singular iff H:;);2m - I) = 0, and an
index 2m+ 1 is singular iff H:;J~m,+')=O. The elements cxk(z), Pk(Z) of the
fraction are fiven by the formulas of Theorems 5-7.

Proof The uniqueness of the Laurent fraction corresponding to a given
Laurent series follows from Theorem 5-7.

We define elements cxk(z), Pk(Z) by the formulas of Theorems 5-7. The
Laurent fraction Kk~ 1 (cxk(Z)/Pk(Z)) obtained in this way corresponds to a
series 2:.;'=0 YpZ- p+:L;'= 1 -Y_pzP. Then the elements CXk(Z), Pk(Z) are
given by the formulas of Theorems 5-7, where the Hankel determinants are
constructed from the sequence {Yp: P = 0, ± 1, ±2, ... }. It is readily verified
that the system of Hankel determinants H;;m, H;;";" H;;!;~m/ I), H;;!;2m-l)
determines uniquely the sequence {cp: p = 0, ± 1, ±2, ... } from which it is
constructed. Hence Yp = Cp' p = 0, ± 1, ± 2, ..., and the result follows. I

7. CORRESPONDENCE BETWEEN CONTRACTIVE LAURENT FRACTIONS

AND POSITIVE DEFINITE LAURENT SERIES

We shall call the sequence {cp: p = 0, ± 1, ±2, ... } positive definite if
H;;m > 0, H:;,;,,; I>°for all m = 0, 1,2, ....
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THEOREM 9. Let the Laurent fraction Kf= 1 (rxk(Z)/Pk(Z)) correspond
to the Laurent series I:;'=ocpz-P+:L;'=I -c_pzP. Then the fraction is
contractive if and only if the sequence {cp: p = 0, ± 1, ±2, ... } is positive
definite.

Proof Assume that the sequence {cp: p = 0, ± 1, ±2, ... } is positive
definite. If 2m is singular then (H:;,;mf= _H:;,;,~ml+llH:;,;,~ml-l)by (4.4),
hence H;!;~ml+I)H:;,;,~ml-l)<O and so V2m-l'V2m+l <0. Similarly if 2m+ 1
is singular then (H:;';':d 2= -H:;,;,~m2+llH;!;2m-l) by (4.5), hence
H;!;~2+llH:;,;,2m-l)<0, and so V2m·V2m+2<0. Thus Co is satisfied.
Furthermore the following relations are seen to hold (in the cases L1-L g ):

(H-(2m-I))2 H-(2m-4)
V - - 2m 2m-J < 0

q2m 2m - H-(2m-2)H-(2m-2)H- 2m '
2m-I 2m-22m

H- (2m - 2)H- (2m - 4)

q __ 2m-l 2m-4 <0
2m - H-(2m-2)H-(2m-4) ,

2m-2 2m-3

(H-(2m+ 1))2 H-(2m-2)
V - - 2m+1 2m-2 <0

q2m+ 1 2m+ 1 - H- 2mH-(2m-2)H-2m '
2m 2m-I 2m+1

(7.1 )

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

hence q2m+IV2m+1 <0.
Thus also the conditions C I-C g are satisfied, and the Laurent fraction is

contractive.
Next assume that the Laurent fraction is contractive. We note that

m>O, that HY>O if n l = 1, and that HY>O, H~>O if nl =2. Let k
be given, and assume that m>0, ... H~~mJ-4»0, H~~m2-2»0 if
nk_I=2m-2, and that m>0, ...,H:;';'~m2-2»0, H:;,;,~ml-2»O if nk_l=
2m-I.



138 OLAV NJA.STAD

(I') Let nk = 2m, nk-l = 2m -1, nk- 2= 2m - 2. Then by (7.1) and
the assumption we get H:;,;m > o.

(2') Let nk= 2m, nk-l = 2m -1, nk- 2= 2m - 3. Then by (7.2) and
the assumption we get Hzm2m > O.

(3') Let nk = 2m, nk-l = 2m - 2, nk_ Z = 2m - 4. Then by (7.3)
and the assumption we get H:;,;,=m1-Z) < O. From (4.5) it follows
that H:;,;,=-mz-

3lH:;,;,2m-l) < 0, since HZ,;/::"l-l) = O. This together
with (H:;,;,=-m2-3)H:;';'2m-l))/(Hz,;.=-mz-ZlHim2m) = VZm ' V2m-2 < 0 and the
assumption implies that H:;,;m > O.

(4') Let nk= 2m, nk-l = 2m - 2, nk-2 = 2m - 3. Then by (7.4) and
the assumption we get H:;,;,2m - 2) > O. As under (3') we conclude that
Hz,;m>o.

(5') Let nk = 2m + 1, nk_ 1= 2m, nk-l = 2m -1. Then by (7.5) and
the assumption we get Hz';": 1> O.

(6') Let nk=2m+l, nk_l=2m, nk_z=2m-2. Then by (7.6) and
the assumption we get H:;,;,,: 1> O.

(7') Let nk = 2m + 1, nk-l = 2m - 1, nk-Z = 2m - 3. Then by
(7.7) and the assumption we get Hz,;m > O. From (4.4) it follows
that H:;,;,iml+llH:;,;,=-~-I) > 0, since Hz';'Zm-l) = O. This together
with (H:;,;,iml + I)H:;,;,=-m1- 1»)/(Him2,,: 1 H:;';'=-~-Z») = VZm+ 1 • VZm-l < 0 and the
assumption implies that Hz';": 1 > O.

(8') Let nk=2m+l, nk_l=2m-l, nk_2=2m-2. Then by (7.8)
and the assumption we get Hz,;m > O. As under (7') we conclude that
H:;,;,,: 1> O.

It now follows by induction that the sequence is positive definite. I

8. MAIN RESULT

Our main results can be collected in the following theorem.

MAIN THEOREM. Correspondence as defined in Section 3 introduces a
one-to-one mapping between all Laurent fractions and all definite Laurent
series. The contractive Laurent fractions are mapped exactly onto all positive
definite Laurent series.
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