Laurent Continued Fractions Corresponding to Pairs of Power Series*

Olav Njåstad

Department of Mathematics, University of Trondheim-NTH, N-7034 Trondheim, Norway

Communicated by Charles K. Chui

Received August 20, 1985; revised July 3, 1986

A continued fraction $\sum_{k=1}^{\infty} (\alpha_k(z)/\beta_k(z))$ is said to correspond to the power series $\sum_{p=0}^{\infty} c_p z^{-p}$ and $\sum_{p=1}^{\infty} -c_{-p} z^p$ if series expansions of the following form for the approximants $f_k(z)$ of the continued fraction are valid,

$$f_{k}(z) - \sum_{p=0}^{\mu_{k}} c_{p} z^{-p} = c z^{-(\mu_{k}+1)} + \cdots,$$

$$f_{k}(z) + \sum_{p=1}^{\nu_{k}} c_{-p} z^{p} = d z^{\nu_{k}+1} + \cdots,$$

where μ_k , $v_k \to \infty$ when $k \to 0$. We introduce a special class of continued fractions, Laurent fractions, and show that the concept of correspondence above induces a one-to-one mapping between all Laurent fractions and all double sequences $\{c_n: n=0, \pm 1, \pm 2, ...\}$ of real numbers satisfying the determinant conditions $H_{2m}^{(-2m)} \neq 0$, $H_{2m+1}^{(-2m)} \neq 0$, m=0, 1, 2... ($H_q^{(p)}$ are the Hankel determinants associated with the sequence $\{c_n\}$.) A subclass, the contractive Laurent fractions, is mapped onto those double sequences which satisfy the conditions $H_{2m}^{(-2m)} > 0$, $H_{2m+1}^{(-2m)} > 0$, m=0, 1, 2.... The double sequences, which in addition to $H_{2m}^{(2m)} \neq 0$, $H_{2m+1}^{(-2m)} \neq 0$ also satisfy the conditions $H_{2m-1}^{(-2m+1)} \neq 0$, $H_{2m-1}^{(-2m+1)} \neq 0$, m=0, 1, 2, ..., are those associated with general *T*-fractions (or *M*-fractions). © 1988 Academic Press, Inc.

INTRODUCTION

Let $\{c_n: n = 0, 1, 2, ...\}$ be a sequence of real numbers. The Hankel determinants $H_k^{(n)}$ are defined for n = 0, 1, 2, ... as follows,

$$H_0^{(n)} = 1, \qquad H_k^{(n)} = \begin{pmatrix} c_n & c_{n+1} & \cdots & c_{n+k-1} \\ c_{n+1} & & \vdots \\ \vdots & & \vdots \\ c_{n+k-1} & \cdots & c_{n+2k-2} \end{pmatrix} \qquad \text{for} \quad k = 1, 2, 3, \dots.$$

* 1980 Subject Classification: 30B70, 30E05.

When $\{c_n: n=0, \pm 1, \pm 2, ...\}$ is a double sequence, the Hankel determinants are defined as above for $n=0, \pm 1, \pm 2, ...$

With a given (simple) sequence $\{c_n\}$ we associate the formal power series $\sum_{k=0}^{\infty} c_k z^{-k}$, and with a given double sequence $\{c_n\}$ we associate the two formal power series $\sum_{k=0}^{\infty} c_k z^{-k}$ and $\sum_{k=1}^{\infty} -c_{-k} z^k$.

A continued fraction

$$\overset{\infty}{\mathsf{K}} \frac{\alpha_k(z)}{\beta_k(z)} = \frac{\alpha_1(z)}{\beta_1(z)} + \frac{\alpha_2(z)}{\beta_2(z)} + \frac{\alpha_3(z)}{\beta_3(z)} + \cdots$$

is said to correspond to the series $\sum_{k=0}^{\infty} c_k z^{-k}$ at $z = \infty$ if formal power series expansions of the following form are valid (we write $f_k(z)$ for the k th approximant of the continued fraction) for every k:

$$f_k(z) - \sum_{p=0}^{\mu_k} c_p z^{-p} = c z^{-(\mu_k+1)} + \cdots,$$

where $\mu_k \to \infty$ as $k \to \infty$. The continued fraction is said to correspond to the series $\sum_{k=0}^{\infty} c_k z^{-k}$ at $z = \infty$ and to the series $\sum_{k=1}^{\infty} -c_{-k} z^k$ at z = 0 if formal power series expansions of the following form are valid,

$$f_k(z) - \sum_{p=0}^{\mu_k} c_p z^{-p} = c z^{-(\mu_k+1)} + \cdots,$$

$$f_k(z) + \sum_{p=1}^{\nu_k} c_{-k} z^p = c z^{(\nu_k+1)} + \cdots,$$

where $\mu_k \to \infty$, $\nu_k \to \infty$ as $k \to \infty$.

A modified regular C-fraction is a continued fraction of the form

$$\frac{a_1}{1+z} + \frac{a_2}{z+1} + \frac{a_3}{1+z+1} + \frac{a_4}{z+1} + \cdots, \qquad a_k \neq 0 \qquad \text{for} \quad k = 1, 2, \dots.$$

It is called a modified Stieltjes fraction if $a_k > 0$ for k = 1, 2, ...

A J-fraction is a continued fraction of the form

$$\frac{g_1 z}{z+h_1} - \frac{g_2}{z+h_2} - \frac{g_3}{z+h_3} - \cdots, \qquad g_k \neq 0 \qquad \text{for} \quad k = 1, 2, \dots.$$

It is called a *real J-fraction* if $g_k > 0$ for k = 1, 2, ...

By a general T-fraction we mean a continued fraction of the form

$$\frac{F_1 z}{1 + G_1 z} + \frac{F_2 z}{1 + G_2 z} + \frac{F_3 z}{1 + G_3 z} + \cdots, \qquad F_k \neq 0, \ G_k \neq 0 \text{ for } k = 1, 2, \dots.$$

It is called a *positive T-fraction* if $F_k > 0$, $G_k > 0$ for k = 1, 2, ...

For more details on these concepts see, e.g., [5].

It is well known that the concept of correspondence at $z = \infty$ induces a one-to-one mapping between all modified regular C-fractions and all (simple) sequences $\{c_n\}$ satisfying the condition

$$H_k^{(0)} \neq 0, \qquad H_k^{(1)} \neq 0, \qquad \text{for} \quad k = 0, 1, 2, \dots$$

The modified Stieltjes fractions are mapped onto the sequences where $H_k^{(0)} > 0$ and $(-1)^k H_k^{(1)} > 0$.

More generally this concept of correspondence induces a one-to-one mapping between all *J*-fractions and all (simple) sequences satisfying the condition

$$H_k^{(0)} \neq 0$$
 for $k = 0, 1, 2, ...$

The real J-fractions are mapped onto the sequences where $H_k^{(0)} > 0$. A real J-fraction is the even part of a modified regular C-fraction iff also $H_k^{(1)} \neq 0$ in the corresponding sequence and of a modified Stieltjes fraction iff also $H_k^{(1)} > 0$. (For the concept of the even part of a continued fraction see, e.g., [5, p. 38-41].)

For more details on these correspondence results see, e.g., [1, 5, 12].

More recently it has become known that the concept of correspondence at $z = \infty$ and at z = 0 induces a one-to-one mapping between all general *T*-fractions and all double sequences $\{c_n\}$ satisfying the condition $H_{2m}^{(-2m)} \neq 0, H_{2m+1}^{(-2m)} \neq 0, H_{2m}^{(-2m+1)} \neq 0$ for m = 0, 1, 2, ... The positive *T*-fractions are mapped onto the sequences where $H_{2m}^{(-2m)} > 0$, $H_{2m-1}^{(-2m)} > 0, H_{2m}^{(-2m+1)} > 0, H_{2m-1}^{(-2m+1)} < 0$.

Correspondence results for general T-fractions can also be formulated in terms of the closely related M-fractions

$$\frac{F_1}{1+G_1z} + \frac{F_2z}{1+G_2z} + \frac{F_3z}{1+G_3z} + \cdots$$

introduced in [7, 8]. For these correspondence results at $z = \infty$ and at z = 0 see [4, 5, 6, 7, 8].

In this paper we show that the concept of correspondence at $z = \infty$ and at z = 0 more generally induces a one-to-one mapping between a class of continued fractions called *Laurent fractions* (for definition see Section 1) and all double sequences $\{c_n\}$ satisfying the condition

$$H_{2m}^{(-2m)} \neq 0, \qquad H_{2m+1}^{(-2m)} \neq 0 \qquad \text{for} \quad m = 0, 1, 2, \dots$$

A special class of Laurent fractions called *contractive Laurent fractions* (for definition see Section 1) is mapped onto the class of those sequences where

 $H_{2m}^{(-2m)} > 0$, $H_{2m+1}^{(-2m)} > 0$. A contractive Laurent fraction is then equivalent with a general *T*-fraction iff also $H_{2m}^{(-2m+1)} \neq 0$, $H_{2m-1}^{(-2m+1)} \neq 0$ in the corresponding double sequence, and with a positive *T*-fraction iff also $H_{2m}^{(-2m+1)} > 0$, $H_{2m-1}^{(-2m+1)} < 0$. (For the concept of equivalence of continued fractions see, e.g., [5, p. 31].) The general *T*-fractions where $H_{2m}^{(-2m)} > 0$, $H_{2m+1}^{(-2m)} > 0$, $H_{2m-1}^{(-2m+1)} \neq 0$ are the *APT*-fractions (characterized by $F_{2m-1}F_{2m} > 0$, $F_{2m-1}G_{2m-1} > 0$) studied in [2].

The contractive Laurent fractions are connected with orthogonal Laurent polynomials (see [3, 9]). The relationship is as follows. Let $R_n(z)$ be the monic orthogonal Laurent polynomials determined by the functional Φ , where $\Phi(\sum_{i=p}^{q} r_i z^i) = \sum_{i=p}^{q} r_i c_i$. Let $B_k(z)$ be the denominators of the Laurent fraction corresponding to the series $\sum_{p=0}^{\infty} c_p z^{-p}$, $\sum_{p=1}^{\infty} -c_{-p} z^p$. Then $R_{n_k}(z) = B_k(z)$ for every non-singular index n_k . When $n_k + 1$ is singular and $n_k + 1 = 2m$, then $R_{2m+1}(z) = k \cdot z B_k(z)$. When $n_k + 1$ is singular and $n_k + 1 = 2m + 1$, then $R_{2m+1}(z) = k' \cdot z^{-1} B_k(z)$. (These results follows from recursion formulas in [9].)

Orthogonal Laurent polynomials can be used to solve the strong Hamburger moment problem (see [3, 9]). In a forthcoming paper it will be shown that the problem also can be solved by the use of contractive Laurent fractions (see [10]). It has earlier been shown that the problem can be solved by APT-fractions in the nonsingular case (see [2]).

The idea of generalizing M-fractions or general T-fractions to obtain results on the strong Hamburger moment problem has also been utilized in [11].

For definitions and basic properties concerning continued fractions we refer to [5].

1. LAURENT FRACTIONS

Let S be a subsequence of the sequence $N = \{0, 1, 2, 3, ...\}$ of nonnegative integers, with the property that no two consecutive elements of N belong to S. We shall call the elements of S singular indices, and the elements of N - S non-singular indices. We shall denote by T the set of all triples of consecutive non-singular indices (i.e., triples of non-singular indices where there are no non-singular indices in between).

We define for every non-singular index n an ordered pair $(a_n, b_n) = (a_n(z), b_n(z))$ (where z is an arbitrary index n an ordered number different from zero) in the following way:

L₁. For every non-singular index *n* there is given a real number $v_n \neq 0$, and $v_0 = 1$.

- L_{II}. For every non-singular index *n* there is given a real number q_n , where $q_0 = 0$, $q_n \neq 0$ for $n \neq 0$.
- L_{III} . For every singular index *n* there is a given real number w_n .

The complex numbers a_n, b_n are given as follows:

- L₁. $a_{2m} = q_{2m}$, $b_{2m} = v_{2m} + (1/v_{2m-1})z$, when $(2m, 2m-1, 2m-2) \in T$.
- L₂. $a_{2m} = q_{2m}z$, $b_{2m} = v_{2m} + (1/v_{2m-1})z$, when $(2m, 2m-1, 2m-3) \in T$.
- L₃. $a_{2m} = q_{2m}, b_{2m} = (v_{2m}/v_{2m-2}) z^{-1} + w_{2m-1} + z$, when $(2m, 2m-2, 2m-4) \in T$.
- L₄. $a_{2m} = q_{2m}z$, $b_{2m} = (v_{2m}/v_{2m-2})z^{-1} + w_{2m-1} + z$, when (2m, $2m-2, 2m-3) \in T$.
- L₅. $a_{2m+1} = q_{2m+1}$, $b_{2m+1} = (1/v_{2m}) z^{-1} + v_{2m+1}$, when $(2m+1, 2m, 2m-1) \in T$.
- L₆. $a_{2m+1} = q_{2m+1}z^{-1}$, $b_{2m+1} = (1/v_{2m})z^{-1} + v_{2m+1}$, when $(2m+1, 2m, 2m-2) \in T$.
- L₇. $a_{2m+1} = q_{2m+1}, \ b_{2m+1} = z^{-1} + w_{2m} + (v_{2m+1}/v_{2m-1})z$, when $(2m+1, 2m-1, 2m-3) \in T$.
- L₈. $a_{2m+1} = q_{2m+1}z^{-1}$, $b_{2m+1} = z^{-1} + w_{2m} + (v_{2m+1}/v_{2m-1})z$, when $(2m+1, 2m-1, 2m-2) \in T$.

(We consider n = -1 as a non-singular index in these formulas).

Let $\{n_k: k = 0, 1, 2, ...\} = N - S$ be the sequence of non-singular indices. We shall write $\alpha_k = \alpha_k(z) = a_{n_k}(z)$, $\beta_k = \beta_k(z) = b_{n_k}(z)$ for k = 1, 2, 3, ... We note that $\alpha_k \neq 0$ for every k. Therefore $\{(\alpha_k, \beta_k): k = 1, 2...\}$ is the sequence of elements of a continued fraction $K_{k=1}^{\infty}(\alpha_k(z)/\beta_k(z))$. A continued fraction obtained in this way is called a Laurent fraction. We shall call a Laurent fraction non-singular if all indices are non-singular.

Let $A_k(z)$ and $B_k(z)$ denote the numerator and denominator of the kth approximant $f_k(z)$ of this continued fraction. Then $A_k(z)$ and $B_k(z)$ satisfy the following recursion formulas:

$$A_{k} = \beta_{k} A_{k-1} + \alpha_{k} A_{k-2} \quad \text{for} \quad k = 1, 2, ..., A_{-1} = 1, A_{0} = 0, B_{k} = \beta_{k} B_{k-1} + \alpha_{k} B_{k-2} \quad \text{for} \quad k = 1, 2, ..., B_{-1} = 0, B_{0} = 1.$$
(1.1)

We note that $A_1 = q_1$, $B_1 = z^{-1} + v_1$ if $n_1 = 1$ (in view of L₅ and R), while $A_1 = q_2 z$, $B_1 = v_2 z^{-1} + w_1 + z$ if $n_1 = 2$ (in view of L₄ and R).

THEOREM 1. The functions A_k and B_k are of the form

$$A_{k}(z) \sum_{i=-(m-1)}^{m} a_{2m,i} z^{i},$$

$$B_{k}(z) = \sum_{i=-m}^{m} b_{2m,i} z^{i}, \quad b_{2m,m} = 1, \ b_{2m,-m} = v_{2m}, \ when \ n_{k} = 2m,$$

$$A_{k}(z) = \sum_{i=-m}^{m} a_{2m+1,i} z^{i},$$

$$B_{k}(z) = \sum_{i=-(m+1)}^{m} b_{2m+1,i} z^{i}, \quad b_{2m+1,-(m+1)} = 1, \ b_{2m+1,m} = v_{2m+1}$$

when $n_{k} = 2m + 1.$

Proof. The result follows by induction from $L_1 - L_8$ and R.

We note that we may write $A_k(z) = \prod_{2m-1}(z)/z^{m-1}$, $B_k(z) = \prod_{2m}(z)/z^m$ when $n_k = 2m$, $A_k(z) = \prod_{2m}(z)/z^m$, $B_k(z) = \prod_{2m+1}(z)/z^{m+1}$ when $n_k = 2m + 1$. Here \prod_r is a polynomial of degree at most equal to r.

A Laurent fraction shall be called *contractive* (because of mapping properties of the associated linear fractional transformations) when the following extra conditions are satisfied:

C ₀ .	$v_{n-1} \cdot v_{n+1} < 0$	when <i>n</i> is singular,
C ₁ .	$q_{2m} \cdot v_{2m} \cdot v_{2m-1} > 0$	when $(2m, 2m-1, 2m-2) \in T$,
C ₂ .	$q_{2m} \cdot v_{2m} < 0$	when $(2m, 2m-1, 2m-3) \in T$,
С3.	$q_{2m} < 0$	when $(2m, 2m-2, 2m-4) \in T$,
C4.	$q_{2m} \cdot v_{2m} < 0$	when $(2m, 2m-2, 2m-3) \in T$,
C5.	$q_{2m+1} \cdot v_{2m+1} \cdot v_{2m} > 0$	when $(2m + 1, 2m, 2m - 1) \in T$,
C ₆ .	$q_{2m+1} \cdot v_{2m+1} < 0$	when $(2m + 1, 2m, 2m - 2) \in T$,
C ₇ .	$q_{2m+1} < 0$	when $(2m + 1, 2m - 1, 2m - 3) \in T$,
C ₈ .	$q_{2m+1} \cdot v_{2m+1} < 0$	when $(2m + 1, 2m - 1, 2m - 2) \in T$.

2. CONNECTION WITH GENERAL T-FRACTIONS

By a general T-fraction we shall here mean an continued fraction

$$\bigvee_{k=1}^{\infty} \frac{F_k z}{1 + G_k z}, \quad \text{where} \quad F_k \neq 0, \ G_k \neq 0, \ k = 1, 2, 3, \dots.$$
 (2.1)

(Note that in [4, 5] the condition $G_k \neq 0$ is not included in the definition of a general *T*-fraction.)

By an APT-fraction we mean a general T-fraction where

$$F_{2m-1}F_{2m} > 0, \qquad F_{2m-1}G_{2m-1} > 0, \qquad m = 1, 2, \dots.$$
 (2.2)

THEOREM 2. There is a one-to-one correspondence between non-singular Laurent fractions and equivalent general T-fractions, given by the formulas

$$F_{2m} = q_{2m} \frac{v_{2m-2}}{v_{2m}}, \qquad F_{2m+1} = q_{2m+1},$$

$$G_{2m} = \frac{1}{v_{2m} \cdot v_{2m-1}}, \qquad G_{2m+1} = v_{2m} \cdot v_{2m+1}$$
(2.3)

or inversely

$$q_{2m} = \frac{F_{2m}}{G_{2m-1}G_{2m}}, \qquad q_{2m+1} = F_{2m+1},$$

$$v_{2m} = \frac{1}{G_1 \cdots G_{2m}}, \qquad v_{2m+1} = G_1 \cdots G_{2m+1}.$$
(2.4)

The contractive non-singular Laurent fractions correspond exactly to the APT-fractions.

Proof. Let $D_n(z)$ and $E_n(z)$ be the numerators and denominators of the general *T*-fraction $K_{n=1}^{\infty}(F_n \cdot z)/(1 + G_n \cdot z)$. Then $D_n(z)$ and $E_n(z)$ satisfy the recursion formulas

$$D_n(z) = (1 + G_n z) D_{n-1}(z) + F_n z D_{n-2}(z), \qquad n = 1, 2, ..., D_{-1} = 1, D_1 = 0,$$

$$E_n(z) = (1 + G_n z) E_{n-1}(z) + F_n z E_{n-2}(z), \qquad n = 1, ..., E_{-1} = 0, \qquad E_0 = 1.$$
(2.5)

We obtain a non-singular Laurent fraction $K_{n=1}^{\infty}(a_n(z)/b_n(z))$ by defining $a_n(z)$ and $b_n(z)$ through (2.4), L_1 , and L_5 . We observe that the functions $A_{2m}(z) = v_{2m}z^{-m}D_{2m}(z)$, $B_{2m}(z) = v_{2m}z^{-m}E_{2m}(z)$, $A_{2m+1}(z) = z^{-(m+1)}$, $D_{2m+1}(z)$, $B_{2m+1}(z) = z^{-(m+1)}E_{2m+1}(z)$ satisfy the recursion formulas (1.1). Hence $A_n(z)$ and $B_n(z)$ are numerators and denominators of $K_{n=1}^{\infty}(a_n(z)/b_n(z))$. Obviously $A_n(z)/B_n(z) = D_n(z)/E_n(z)$, and consequently the two continued fractions are equivalent. Conversely for a given non-singular Laurent fraction an equivalent general *T*-fraction can be obtained by defining F_n and G_n by (2.3). Clearly the correspondence is one-to-one.

From (2.3) is obtained

$$F_{2m-1}G_{2m-1} = q_{2m}v_{2m-1}v_{2m-2},$$

$$F_{2m-1}F_{2m} = q_{2m-1}v_{2m-1}v_{2m-2} \cdot \frac{q_{2m}^2}{q_{2m}v_{2m}v_{2m-1}},$$

and conversely from (2.4) is obtained

$$q_{2m+1}v_{2m+1}v_{2m} = F_{2m+1}G_{2m+1},$$

$$q_{2m}v_{2m}v_{2m-1} = F_{2m-1}F_{2m} \cdot \frac{1}{F_{2m-1}G_{2m-1}G_{2m}^2}.$$

It follows that conditions C_1 and C_5 are satisfied for all *m* if and only if condition (2.2) is satisfied for all *m*. There are no non-singular indices in this situation, so C_0 is always satisfied.

3. LAURENT SERIES CORRESPONDING TO GIVEN LAURENT FRACTIONS

We shall define correspondence between a Laurent fraction $K_{k=1}^{\infty}(\alpha_k(z)/\beta_k(z))$ and two series, namely with the series $\sum_{p=1}^{\infty} c_p z^{-p}$ at infinity and with the series $\sum_{p=1}^{\infty} -c_{-p} z^p$ at the origin. Equivalently we shall talk of correspondence with a *formal* Laurent series $(\sum_{p=0}^{\infty} c_p z^{-p} + \sum_{p=1}^{\infty} -c_{-p} z^p)$. Formal Laurent series are called simply Laurent series in the following. We denote the coefficients of z^p for p=1, 2, ... by $-c_{-p}$ in order to get conditions that are easily stated in terms of Hankel determinants.

We say that the Laurent fraction $\mathsf{K}_{k=1}^{\infty}(\alpha_k(z)/\beta_k(z))$ corresponds to the Laurent series $\sum_{p=0}^{\infty} c_p z^{-p} + \sum_{p=1}^{\infty} -c_{-p} z^p$ if (for every k) formal power series expansions of the following forms are valid (we write $f_k(z)$ for $A_k(z)/B_k(z)$),

$$f_k(z) + [c_{-1}z + \dots + c_{-\nu_k}z^{\nu_k}] = cz^{\nu_k + 1} + \dots,$$

$$f_k(z) - [c_0 + c_1z^{-1} + \dots + c_{\mu_k}z^{-\mu_k}] = cz^{-(\mu_k + 1)} + \dots,$$

where $v_k \rightarrow_{k \rightarrow \infty} \infty$, $\mu_k \rightarrow_{k \rightarrow \infty} \infty$.

LEMMA 1. For every k the product $\alpha_1 \cdots \alpha_{k+1}$ has the following form (where c denotes constants different from zero):

126

 $\alpha_1 \cdots \alpha_{k+1} = c$ when $n_k = 2m, n_{k+1} = 2m+1$, (3.1)

$$\alpha_1 \cdots \alpha_{k+1} = cz$$
 when $n_k = 2m, n_{k+1} = 2m+2,$ (3.2)

$$\alpha_1 \cdots \alpha_{k+1} = c$$
 when $n_k = 2m+1, n_{k+1} = 2m+2,$ (3.3)

$$\alpha_1 \cdots \alpha_{k+1} = cz^{-1}$$
 when $n_k = 2m+1, n_{k+1} = 2m+3.$ (3.4)

Proof. We note that $\alpha_1 = q_1$ if $n_1 = 1$, $\alpha_1 = q_1 z$ if $n_1 = 2$. Assume that $\alpha_1 \cdots \alpha_{k+1}$ has the form stated for $k \le h$. By combining this assumption with the various forms of α_{h+2} according to $L_1 - L_8$, we obtain the desired form of $\alpha_1 \cdots \alpha_{h+2}$. So the result follows.

THEOREM 3. The Laurent fraction $K_{k=1}^{\infty}(\alpha_k(z)/\beta_k(z))$ corresponds to a unique Laurent series $\sum_{p=0}^{\infty} c_p z^{-p} + \sum_{p=1}^{\infty} -c_{-p} z^p$. For each k the following formulas hold (where c denotes constants different from zero):

$$f_{k}(z) + [c_{-1}z + \dots + c_{-2m}z^{2m}]$$

= $cz^{2m+1} + \dots, \quad when \quad n_{k} = 2m,$ (3.5)

$$f_{k}(z) + [c_{-1}z + \dots + c_{-(2m+1)}z^{2m+1}]$$

= $cz^{2m+2} + \dots, \quad when \quad n_{k} = 2m, \ n_{k+1} = 2m+2,$ (3.6)

$$f_{k}(z) + [c_{-1}z + \dots + c_{-(2m+1)}z^{2m+1}]$$

= $cz^{2m+2} + \dots, \qquad \text{when} \quad n_{k} = 2m+1,$ (3.7)

$$f_{k}(z) - [c_{0} + \dots + c_{2m-1}z^{-(2m-1)}]$$

= $cz^{-2m} + \dots, \qquad \text{when} \quad n_{k} = 2m,$ (3.8)

$$f_k(z) - [c_0 + \dots + c_{2m} z^{-2m}]$$

= $c z^{-(2m+1)} + \dots, \quad \text{when} \quad n_k = 2m + 1,$ (3.9)

$$f_k(z) - [c_0 + \dots + c_{2m+1} z^{-(2m+1)}]$$

= $c z^{-(2m+2)} + \dots, \quad \text{when} \quad n_k = 2m+1, n_{k+1} = 2m+3.$ (3.10)

Proof. We write $\Delta(z)$ for the expression $A_{k+1}(z)/B_{k+1}(z) - A_k(z)/B_k(z)$. The well-known determinant formula for continued fractions (see, e.g., [5]) gives

$$\Delta(z) = (-1)^k \frac{\alpha_1(z) \cdots \alpha_{k+1}(z)}{B_k(z) B_{k+1}(z)}.$$
(3.11)

Taking into account the form of $B_k(z)$ given in Theorem 1 and the results of Lemma 1, we obtain

$$\begin{aligned} \Delta(z) &= cz^{2m+1} + \cdots, & \text{when} \quad n_k = 2m, \, n_{k+1} = 2m+1, \\ \Delta(z) &= cz^{2m+2} + \cdots, & \text{when} \quad n_k = 2m, \, n_{k+1} = 2m+2, \\ & \text{when} \quad n_k = 2m+1, \, n_{k+1} = 2m+2, \text{ and} \\ & \text{when} \quad n_k = 2m+1, \, n_{k+1} = 2m+3, \\ \Delta(z) &= cz^{-2m} + \cdots, & \text{when} \quad n_k = 2m, \, n_{k+1} = 2m+1, \text{ and} \\ & \text{when} \quad n_k = 2m, \, n_{k+1} = 2m+2, \\ \Delta(z) &= cz^{-(2m+1)} + \cdots, & \text{when} \quad n_k = 2m+1, \, n_{k+1} = 2m+2, \\ \Delta(z) &= cz^{-(2m+2)} + \cdots, & \text{when} \quad n_k = 2m+1, \, n_{k+1} = 2m+3. \end{aligned}$$

We define c_p and $-c_p$ as the coefficients of the appropriate power series expansions for $A_k(z)/B_k(z)$ for sufficiently large k. Then the formulas of Theorem 3, and hence the desired correspondence, follow. The uniqueness of the corresponding series is immediate.

4. HANKEL DETERMINANTS OF THE COORESPONDING LAURENT SERIES

We shall develop conditions for a Laurent series to correspond to a Laurent fraction. In this section we assume that the fraction $\mathsf{K}_{k=1}^{\infty}(\alpha_k(z)/\beta_k(z))$ corresponds to the series $\sum_{p=0}^{\infty} c_p z^{-p} + \sum_{p=1}^{\infty} -c_{-p} z^p$. Let notations be as before. We write π_k for the product $(-1)^k \alpha_1(z) \cdots \alpha_k(z)$ and note that $\pi_k \neq 0$ for $k = 1, 2, \ldots$. We recall that $b_{2m, -m} \neq 0, b_{2m+1, m} \neq 0$ (by Theorem 1). We shall in the following simplify the notations for the Hankel determinants $H_q^{(p)}$ (see Introduction) and write H_q^p for $H_q^{(p)}$. We shall have occasion to use repeatedly the Jacobi identity

$$(H_q^p)^2 - H_q^{p-1}H_q^{p+1} + H_{q+1}^{p-1}H_{q-1}^{p+1} = 0$$
(4.1)

(see, e.g., [5]).

For reference we list a few special cases:

$$(H_{2m+1}^{-(2m+1)})^2 - H_{2m+1}^{-(2m+2)}H_{2m+1}^{-2m} + H_{2m+2}^{-(2m+2)}H_{2m}^{-2m} = 0,$$
(4.2)

$$(H_{2m}^{-(2m-1)})^2 - H_{2m}^{-2m}H_{2m}^{-(2m-2)} + H_{2m+1}^{-2m}H_{2m-1}^{-(2m-2)} = 0, \qquad (4.3)$$

$$(H_{2m}^{-2m})^2 - H_{2m}^{-(2m+1)}H_{2m}^{-(2m-1)} + H_{2m+1}^{-(2m+1)}H_{2m-1}^{-(2m-1)} = 0,$$
(4.4)

$$(H_{2m+1}^{-2m})^2 - H_{2m+1}^{-(2m+1)}H_{2m-1}^{-(2m-1)} + H_{2m+2}^{-(2m+1)}H_{2m}^{-(2m-1)} = 0.$$
(4.5)

PROPOSITION 1. Let $n_k = 2m$, $n_{k+1} = 2m + 1$. Then $H_{2m+1}^{-(2m+1)} = \pi_{k+1}H_{2m}^{-2m}$, $H_{2m+1}^{-2m} = -(\pi_{k+1}/(b_{2m,-m} \cdot b_{2m+1,m}))H_{2m}^{-(2m-1)}$.

Proof. The determinants formula (3.11) implies that $A_k(z)/B_k(z) = A_{k+1}(z)/B_{k+1}(z) + \pi_{k+1}/(B_k(z) B_{k+1}(z))$, hence by Theorem 3 we obtain

$$A_{k}(z) = -B_{k}(z)[c_{-1}z + \dots + c_{-(2m+1)}z^{2m+1}] + \pi_{k+1}z^{m+1} + \dots, \quad (4.6)$$

$$A_{k}(z) = B_{k}(z)[c_{0} + \dots + c_{2m}z^{-2m}] + \pi_{k+1}b_{2m+1,m}z^{-m} + \dots, \qquad (4.7)$$

where π_{k+1} by (3.1) (Lemma 1) is a constant.

Comparison of coefficients for $z^{-(m-1)}$, ..., z^m in (4.6) gives

$$c_{-1}b_{2m,-m} = -a_{2m,-(m-1)},$$

$$\vdots \qquad \vdots \qquad \vdots \qquad (4.8)$$

$$c_{-2m}b_{2m,-m} + \dots + c_{-1}b_{2m,m-1} = -a_{2m,m}$$

Similarly comparison of coefficients for $z^{-(m-1)}$, ..., z^m in (4.7) gives

$$c_{0}b_{2m,-(m-1)} + \dots + c_{2m-1} \cdot 1 = a_{2m,-(m-1)},$$

$$\vdots \qquad \vdots \qquad \vdots \qquad (4.9)$$

$$c_{0} \cdot 1 = a_{2m,m}.$$

Addition of these equations gives

$$c_{-2m}b_{2m,-m} + \dots + c_0 \cdot 1 = 0,$$

$$\vdots \qquad b \qquad \vdots \qquad (4.10)$$

$$c_{-1}b_{2m,-m} + \dots + c_{2m-1} \cdot 1 = 0.$$

Comparison of coefficients for z^{m+1} in (4.6) and for z^{-m} in (4.7) gives

$$c_{-(2m+1)}b_{2m,-m} + \cdots + c_{-1} \cdot 1 = \pi_{k+1},$$
 (4.11)

$$c_0 b_{2m,-m} + \dots + c_{2m} \cdot 1 = -\frac{\pi_{k+1}}{b_{2m+1,m}}.$$
 (4.12)

Straightforward calculation, applying Cramer's rule to (4.10), and using (4.11) gives

$$H_{2m+1}^{-(2m+1)} = \begin{vmatrix} c_{-(2m+1)} & \cdots & c_{-1} \\ \vdots & & \vdots \\ c_{-1} & \cdots & c_{2m-1} \end{vmatrix}$$
$$= \sum_{j=1}^{2m+1} (-1)^{j} c_{-j} \begin{vmatrix} c_{-2m} & \cdots & c_{0} \\ \vdots & & \vdots \\ c_{-1} & \cdots & c_{2m-1} \end{vmatrix}$$

$$= -\sum_{j=1}^{2m+1} c_{-j} \begin{vmatrix} c_{-2m} & \cdots & c_{0} & \cdots & c_{-1} \\ \vdots & \vdots & \vdots \\ c_{-1} & \cdots & c_{2m-1} & \cdots & c_{2m-2} \end{vmatrix}$$
$$= \sum_{j=1}^{2m+1} c_{-j} H_{2m}^{-2m} b_{2m,m+1-j}$$
$$= H_{2m}^{-2m} \cdot [c_{-(2m+1)} b_{2m,-m} + \cdots + c_{-1} \cdot 1] = \pi_{k+1} H_{2m}^{-2m}$$

Similarly by applying Cramer's rule to (4.10) and using (4.12) we obtain

$$H_{2m+1}^{-2m} = \begin{vmatrix} c^{-2m} & \cdots & c_0 \\ \vdots & \vdots \\ c_0 & \cdots & c_{2m} \end{vmatrix}$$
$$= \sum_{j=0}^{2m} (-1)^{j+1} c_j \begin{vmatrix} c_{-2m} & \cdots & c_0 \\ \vdots & \vdots \\ c_{-1} & \cdots & c_{2m-1} \end{vmatrix}$$
$$= -\sum_{j=0}^{2m} c_j \begin{vmatrix} c_{-(2m-1)} & \cdots & c_{-2m} & \cdots & c_0 \\ \vdots & \vdots & \vdots \\ c_0 & \cdots & c_{-1} & \cdots & c_{2m-1} \end{vmatrix}$$
$$= \sum_{j=0}^{2m} \frac{c_j}{b_{2m,-m}} b_{2m,j-m} H_{2m}^{-(2m-1)}$$
$$= \frac{1}{b_{2m,-m}} H_{2m}^{-(2m-1)} [c_0 b_{2m,-m} + \cdots + c_{2m} \cdot 1]$$
$$= \frac{-\pi_{k+1}}{b_{2m,-m}} H_{2m}^{-(2m-1)} .$$

PROPOSITION 2. Let $n_k = 2m$, $n_{k+1} = 2m + 2$. Then $H_{2m+1}^{-2m} = -\pi_{k+1}z^{-1}H_{2m}^{-2m}$, $H_{2m+1}^{-(2m+2)} = -((\pi_{k+1}z^{-1})/(b_{2m,-m} \cdot b_{2m+2,-(m+1)}))$ H_{2m}^{-2m} , $H_{2m+1}^{-(2m+1)} = 0$, $H_{2m+1}^{-(2m+2)}H_{2m+1}^{-2m} = H_{2m+2}^{-2m+2}H_{2m}^{-2m}$, $H_{2m+2}^{-(2m+1)}H_{2m}^{-2m-1} = (H_{2m+1}^{-2m})^2$.

Proof. From (3.11) and Theorem 3 we obtain

$$A_{k}(z) = -B_{k}(z)[c_{-1}c + \dots + c_{-(2m+2)}z^{2m+2}] + (\pi_{k+1}z^{-1})\frac{z^{m+2}}{b_{2m+2,-(m+1)}},$$
(4.13)

$$A_{k}(z) = B_{k}(z)[c_{0} + \dots + c_{2m+1}z^{-(2m+1)}] + (\pi_{k+1}z^{-1})z^{-m} + \dots, \quad (4.14)$$

where $\pi_{k+1}z^{-1}$ is a constant by (3.2) (Lemma 1).

Comparison of coefficients for $z^{-(m-1)}$, ..., z^{m+1} in (4.13) and (4.14) and addition gives

while comparison of coefficients for z^{m+2} in (4.13) and for z^{-m} in (4.14) gives

$$c_{-(2m+2)}b_{2m,-m} + \dots + c_{-2} \cdot 1 = \frac{\pi_{k+1}z^{-1}}{b_{2m+2,-(m+1)}},$$
 (4.16)

$$c_0 b_{2m,-m} + \dots + c_{2m} \cdot 1 = -\pi_{k+1} z^{-1}.$$
 (4.17)

By applying Cramer's rule to the system (4.15) with the first row removed and using (4.17) we obtain in the same way as in the proof of Proposition 1 the equality $H_{2m+1}^{-2m} = -(\pi_{k+1}z^{-1})H_{2m}^{-2m}$. Similarly by applying Cramer's rule to (4.15) with the last row removed and using (4.16) we obtain $H_{2m+1}^{-(2m+2)} = -((\pi_{k+1}z^{-1})/(b_{2m,-m} \cdot b_{2m+2,-(m+1)}))H_{2m}^{-2m}$. Since (4.15) has a nontrivial solution we immediately conclude that $H_{2m+1}^{-(2m+1)} = 0$. Finally the equalities $H_{2m+1}^{-(2m+2)}H_{2m+1}^{2m} = H_{2m+2}^{-(2m+2)}H_{2m}^{-2m}$, $H_{2m+2}^{-(2m+1)}H_{2m}^{-(2m-1)} = (H_{2m+1}^{-2m})^2$ follow from (4.2) and (4.5).

PROPOSITION 3. Let $n_k = 2m - 1$, $n_{k+1} = 2m$. Then $H_{2m}^{-(2m-1)} = \pi_{k+1}H_{2m-1}^{-(m-2)}$, $H_{2m}^{-2m} = (-\pi_{k+1}/(b_{2m-1,m-1}b_{2m,-m}))H_{2m-1}^{-(2m-1)}$.

Proof. From (3.11) and Theorem 3 we obtain

$$A_{k}(z) = -B_{k}(z)(c_{-1}z + \dots + c_{-2m}z^{2m}] + \frac{\pi_{k+1}}{b_{2m,-m}}z^{m} + \dots, \quad (4.18)$$

$$A_{k}(z) = B_{k}(z)[c_{0} + \dots + c_{2m-1}z^{-(2m-1)}] + \pi_{k+1}z^{-m} + \dots, \quad (4.19)$$

where π_{k+1} is a constant by (3.3) (Lemma 1).

Comparison of coefficients for $z^{-(m-1)}$, ..., z^{m-1} in (4.18) and (4.19) and addition give

$$c_{-(2m-1)} \cdot 1 + \dots + c_{0} \cdot b_{2m-1,m-1} = 0,$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$c_{-1} \cdot 1 + \dots + c_{2m-2} \cdot b_{2m-1,m-1} = 0.$$
(4.20)

Similarly comparison of coefficients for z^m in (4.18) and for z^{-m} in (4.19) give

OLAV NJÅSTAD

$$c_{-2m} \cdot 1 + \dots + c_{-1} \cdot b_{2m,m-1} = \frac{\pi_{k+1}}{b_{2m,-m}},$$
 (4.21)

$$c_0 \cdot 1 + \dots + c_{2m-1}, b_{2m,m-1} = \pi_{k+1}.$$
 (4.22)

By applying (4.20) and (4.22) as in the proof of Proposition 1 we get $H_{2m}^{-2(2m-1)} = \pi_{k+1} H_{2m-1}^{-(2m-2)}$, while similarly applying (4.20) and (4.21) we get $H_{2m}^{-2m} = (-\pi_{k+1}/(b_{2m-1,m-1}b_{2m,-m})) H_{2m-1}^{-(2m-1)}$.

PROPOSITION 4. $n_k = 2m - 1$, $n_{k+1} = 2m + 1$. Then $H_{2m}^{-2m} = (\pi_{k+1}z) H_{2m-1}^{-(2m-2)}$, $H_{2m}^{-(2m-2)} = ((\pi_{k+1}z)/(b_{2m-1,m-1} \cdot b_{2m+1,m})) H_{2m-1}^{-(2m-1)}$, $H_{2m}^{-(2m-1)} = 0$, $H_{2m}^{-2m} H_{2m}^{-(2m-2)} = H_{2m+1}^{-2m} H_{2m-1}^{-(2m-2)}$, $H_{2m+1}^{-(2m+1)} H_{2m-1}^{-(2m-1)} = (H_{2m}^{-2m})^2$.

Proof. From (3.11) and Theorem 3 we obtain

$$A_{k}(z) = -B_{k}(z)[c_{-1}z + \dots + c_{-(2m+1)}z^{2m+1}] + (\pi_{k+1}z)z^{m} + \dots, \quad (4.23)$$

$$A_{k}(z) = B_{k}(z)[c_{0} + \dots + c_{2m}z^{-2m}] + \frac{\pi_{k+1}z}{b_{2m+1,m}}z^{-(m+1)} + \dots, \qquad (4.24)$$

where $\pi_{k+1}z$ is a constant by (3.4).

Comparison of coefficients for z^{-m} , ..., z^{m-1} in (4.23) and (4.24) and addition gives

$$c_{-(2m-1)} \cdot 1 + \dots + c_0 b_{2m-1,m-1} = 0,$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$c_0 \cdot 1 \qquad + \dots + c_{2m} b_{2m-1,m-1} = 0,$$

(4.25)

while comparison of coefficients for $z^{-(m+1)}$ in (4.24) and for z^m in (4.23) gives

$$c_1 \cdot 1 + \dots + c_{2m} b_{2m-1,m-1} = \frac{\pi_{k+1} z}{b_{2m+1,m}},$$
 (4.26)

$$c_{-2m} \cdot 1 + \dots + c_{-1} b_{2m-1,m-1} = \pi_{k+1} z.$$
 (4.27)

By applying (4.25) and (4.27) as in the proof of Proposition 3 we obtain $H_{2m}^{-2m} = (\pi_{k+1}z) H_{2m-1}^{-(2m-2)}$. Similarly by applying (4.25) and (4.26) we obtain $H_{2m}^{-(2m-2)} = ((\pi_{k+1}z)/(b_{2m-1,m-1}b_{2m+1,m})) H_{2m-1}^{-(2m-1)}$. Also from (4.25) be get the equality $H_{2m}^{-(2m-1)} = 0$. The equalities $H_{2m}^{-2m}H_{2m-2}^{-(2m-2)} = H_{2m+1}^{-2m}H_{2m-1}^{-(2m-2)}$ and $H_{2m+1}^{-(2m+1)}H_{2m-1}^{-(2m-1)} = (H_{2m}^{-2m})^2$ follow from (4.3) and (4.4).

THEOREM 4. Let the Laurent fraction $K_{k=1}^{\infty}(\alpha_k(z)/\beta_k(z))$ correspond to the Laurent series $\sum_{p=0}^{\infty} c_p z^{-p} + \sum_{p=1}^{\infty} -c_{-p} z^p$. Then the following statements hold:

A. $H_{2m}^{-2m} \neq 0$, $H_{2m+1}^{-2m} \neq 0$ for all m = 0, 1, 2, ...

B. $H_{2m}^{-(2m-1)} \neq 0$ if and only if 2m is non-singular, $H_{2m+1}^{-(2m+1)} \neq 0$ if and only if 2m + 1 is non-singular.

C. If $n_k = 2m$ then

$$B_{k}(z) = \frac{1}{H_{2m}^{-2m}} \begin{vmatrix} c_{-2m} & \cdots & c_{-1} & z^{-m} \\ \vdots & \vdots & \vdots \\ c_{0} & \cdots & c_{2m-1} & z^{m} \end{vmatrix};$$

if $n_k = 2m + 1$ then

$$B_{k}(z) = \frac{-1}{H_{2m+1}^{-2m}} \begin{vmatrix} c_{-(2m+1)} & \cdots & c_{-1} & z^{-(m+1)} \\ \vdots & \vdots & \vdots \\ c_{0} & \cdots & c_{2m} & z^{m} \end{vmatrix}$$

Proof. A and B. We note that $f_1(z) = q_1/(z^{-1} + v_1)$ if $n_1 = 1$, $f_1(z) = (q_2 z)/(v_2 z^{-1} + w_1 + z)$ if $n_1 = 2$ (see Section 1). It follows by Theorem 3 that $c_0 \neq 0$ and thus $H_1^0 \neq 0$. Similarly $c_{-1} \neq 0$ and thus $H_1^{-1} \neq 0$ if $n_1 = 1$, while $c_1 = 0$, $c_2 \neq 0$ and hence $H_1^{-1} = 0$, $H_2^{-2} \neq 0$, $H_2^{-1} \neq 0$ if $n_1 = 2$.

Now we assume that the statement on the Hankel determinants are true for all $k \le h$, where $n_h = 2m$ or $n_h = 2m - 1$.

(i) Let $n_h = 2m$, $n_{h+1} = 2m + 1$. Then by assumption $H_{2m}^{-2m} \neq 0$ and $H_{2m}^{-(2m-1)} \neq 0$. It follows from Proposition 1 that $H_{2m+1}^{-2m} \neq 0$, $H_{2m+1}^{-(2m+1)} \neq 0$.

(ii) Let $n_h = 2m$, $n_{h+1} = 2m + 2$. Then by assumption $H_{2m}^{-2m} \neq 0$ and $H_{2m}^{-(2m-1)} \neq 0$. It follows from Proposition 2 that $H_{2m+1}^{-2m} \neq 0$, $H_{2m+1}^{-(2m+1)} = 0$, $H_{2m+1}^{-(2m+2)} \neq 0$, hence $H_{2m+2}^{-(2m+2)} \neq 0$ and $H_{2m+2}^{-(2m+1)} \neq 0$.

(iii) Let $n_h = 2m - 1$, $n_{h+1} = 2m$. Then by assumption $H_{2m-1}^{-(2m-1)} \neq 0$ and $H_{2m-1}^{-(2m-2)} \neq 0$. It follows from Proposition 3 that $H_{2m}^{-(2m-1)} \neq 0$, $H_{2m}^{-2m} \neq 0$.

(iv) Let $n_h = 2m - 1$, $n_{h+1} = 2m + 1$. Then by assumption $H_{2m-1}^{-(2m-1)} \neq 0$ and $H_{2m-1}^{-(2m-2)} \neq 0$. It follows from Proposition 4 that $H_{2m}^{-2m} \neq 0$, $H_{2m}^{-(2m-1)} = 0$, $H_{2m}^{-(2m-2)} \neq 0$, hence $H_{2m+1}^{-2m} \neq 0$ and $H_{2m+1}^{-(2m+1)} \neq 0$.

The statements of A and B now follow by induction.

C. Expansion of the determinants after the last column and comparison with (4.10), (4.15), (4.20), and (4.25) give the form of $B_k(z)$.

OLAV NJÅSTAD

5. THE LAURENT FRACTION EXPRESSED IN TERMS OF THE CORRESPONDING SERIES

Also in this section we assume that the fraction $K_{k=1}^{\infty}(\alpha_k(z)/\beta_k(z))$ corresponds to the series $\sum_{p=0}^{\infty} c_p z^{-p} + \sum_{p=1}^{\infty} -c_{-p} z^p$. Our next task is to express the elements of the continued fraction in terms of the coefficients of the series.

From the form of $B_k(z)$ given in Theorem 4 (or directly from Eqs. (4.10), (4.15), (4.20), and (4.25)) we find the following expressions for $b_{2m,-m}$, $b_{2m,2m-1}$, $b_{2m+1,m}$, $b_{2m+1,-m}$:

$$b_{2m,-m} = \frac{H_{2m}^{-(2m-1)}}{H_{2m}^{-2}}, \qquad b_{2m,m-1} = \frac{M_{2m}^{-2m}}{H_{2m}^{-2m}},$$

$$b_{2m+1,m} = -\frac{H_{2m+1}^{-(2m+1)}}{H_{2m+1}^{-2m}}, \qquad b_{2m+1,-m} = -\frac{N_{2m+1}^{-(2m+1)}}{H_{2m+1}^{-2m}}$$
(5.1)

where

$$M_{2m}^{-2m} = \begin{vmatrix} c_{-2m} & \cdots & c_{-1} \\ \vdots & & \vdots \\ c_{-2} & \cdots & c_{2m-3} \\ c_{0} & \cdots & c_{2m-1} \end{vmatrix}, \qquad N_{2m+1}^{-(2m+1)} = \begin{vmatrix} c_{-(2m+1)} & \cdots & c_{-1} \\ c_{-(2m-1)} & \cdots & c_{1} \\ \vdots & & \vdots \\ c_{0} & \cdots & c_{2m} \end{vmatrix}.$$
(5.2)

THEOREM 5. Let $K_{k=1}^{\infty}(\alpha_k(z)/\beta_k(z))$ correspond to $\sum_{p=0}^{\infty} c_p z^{-p} + \sum_{p=1}^{\infty} -c_{-p} z^p$. Then the coefficients q_n in $\alpha_k(z)$ be expressed as follows:

$$q_{2m} = -\frac{H_{2m-2}^{-(2m-2)}H_{2m}^{-(2m-1)}}{H_{2m-1}^{-(2m-1)}H_{2m-1}^{-(2m-2)}} \quad in \ case \ L_1, \tag{5.3}$$

$$q_{2m} = -\frac{H_{2m}^{-(2m-1)}H_{2m-3}^{-(2m-4)}}{H_{2m-1}^{-(2m-2)}H_{2m-2}^{-(2m-2)}} \quad in \ case \ L_2, \tag{5.4}$$

$$q_{2m} = -\frac{H_{2m-1}^{-(2m-2)}H_{2m-4}^{-(2m-4)}}{H_{2m-2}^{-(2m-2)}H_{2m-3}^{-(2m-4)}} \quad in \ case \ L_3, \tag{5.5}$$

$$q_{2m} = \frac{H_{2m-1}^{-(2m-2)}H_{2m-3}^{-(2m-4)}}{H_{2m-2}^{-(2m-2)}H_{2m-2}^{-(2m-3)}} \qquad \text{in case } L_4, \tag{5.6}$$

$$q_{2m+1} = -\frac{H_{2m+1}^{-(2m+1)}H_{2m-1}^{-(2m-2)}}{H_{2m}^{-2m}H_{2m}^{-(2m-1)}} \quad in \ case \ L_5, \tag{5.7}$$

$$q_{2m+1} = \frac{H_{2m+1}^{-(2m+1)} H_{2m-2}^{-(2m-2)}}{H_{2m}^{-(2m-2)} H_{2m-1}^{-(2m-2)}} \qquad \text{in case } L_6, \tag{5.8}$$

LAURENT CONTINUED FRACTIONS

$$q_{2m+1} = -\frac{H_{2m}^{-2m}H_{2m-3}^{-(2m-4)}}{H_{2m-1}^{-(2m-2)}H_{2m-2}^{-(2m-2)}} \quad in \ case \ L_{7}, \tag{5.9}$$

$$q_{2m+1} = -\frac{H_{2m}^{-2m}H_{2m-2}^{-(2m-2)}}{H_{2m-1}^{-(2m-2)}H_{2m-1}^{-(2m-1)}} \quad in \ case \ L_8.$$
(5.10)

Proof. In the cases L_1-L_8 the coefficient q_n can be written as (1) $q_{2m} = -\pi_{k+1}/\pi_k$, (2) $q_{2m} = -\pi_{k+1}/\pi_k$, (3) $q_{2m} = -\pi_{k+1}/\pi_k$, (4) $q_{2m} = -z^{-1}\pi_{k+1}/\pi_k$, (5) $q_{2m+1} = -\pi_{k+1}/\pi_k$, (6) $q_{2m+1} = \pi_{k+1}/z^{-1}\pi_k$, (7) $q_{2m+1} = -\pi_{k+1}/\pi_k$, (8) $q_{2m+1} = -z\pi_{k+1}/\pi_k$. (Here $n_{k+1} = 2m$, $n_{k+1} = 2m+1$, respectively). Substitution for π_{k+1} , π_k by those expressions in the appropriate propositions in Section 4 that to not contain coefficients of B_k lead to the desired formulas.

THEOREM 6. The expressions v_{2m} , v_{2m+1} occurring in the elements $\beta_k(z)$ are given by

$$v_{2m} = \frac{H_{2m}^{-(2m-1)}}{H_{2m}^{-2m}}, \qquad v_{2m+1} = -\frac{H_{2m+1}^{-(2m+1)}}{H_{2m+1}^{-2m}}.$$
 (5.11)

Proof. This follows immediately from Theorem 1 and formulas B.

THEOREM 7. The expressions w_{2m} , w_{2m-1} occurring in the elements $\beta_k(z)$ are given by

$$w_{2m-1} = \frac{M_{2m}^{-2m}}{H_{2m}^{-2m}} - \frac{M_{2m-2}^{-(2m-2)}}{H_{2m-2}^{-(2m-2)}}$$
 in case L₃ (5.12)

$$w_{2m-1} = \frac{M_{2m}^{-2m}}{H_{2m}^{-2m}} - \frac{M_{2m-2}^{-(2m-2)}}{H_{2m-2}^{-(2m-2)}} + \frac{H_{2m-1}^{-(2m-2)}H_{2m-3}^{-(2m-3)}}{H_{2m-2}^{-(2m-2)}H_{2m-3}^{-(2m-3)}}$$
 in case L₄ (5.13)

$$w_{2m} = -\frac{N_{2m+1}^{-(2m+1)}}{H_{2m+1}^{-2m}} + \frac{N_{2m-1}^{-(2m-1)}}{H_{2m-1}^{-(2m-2)}}$$
 in case L₇ (5.14)

$$w_{2m} = -\frac{N_{2m+1}^{-(2m+1)}}{H_{2m+1}^{-2m}} + \frac{N_{2m-1}^{-(2m-1)}}{H_{2m-1}^{-(2m-2)}} + \frac{H_{2m}^{-2m}H_{2m-2}^{-(2m-3)}}{H_{2m-1}^{-(2m-1)}H_{2m-1}^{-(2m-1)}} \quad in \ case \ L_8. \ (5.15)$$

Proof. (*Case* L₃). Comparison of coefficients for z^{m-1} in the recursion formula $B_{2m}(z) = ((v_{2m}/v_{2m-2}) z^{-1} + w_{2m-1} + z) B_{2m-2}(z) + q_{2m}B_{2m-4}(z)$ gives $w_{2m-1} = b_{2m,m-1} - b_{2m-2,m-2}$, and the result follows from (5.1).

(*Case* L₄). Comparison of coefficients for z^{m-1} in the recursion formula $B_{2m}(z) = ((v_{2m}/v_{2m-2}) z^{-1} + w_{2m-1} + z) B_{2m-2}(z) + q_{2m} z B_{2m-3}(z)$ gives $w_{2m-1} = b_{2m,m-1} - b_{2m-2,m-2} - q_{2m} b_{2m-3,m-2}$, and the result follows from (5.1) and (5.6) (Theorem 5).

135

OLAV NJÅSTAD

(Case L₇). Comparison of coefficients for z^{-m} in the recursion formula $B_{2m+1}(z) = (z^{-1} + w_{2m} + (v_{2m+1}/v_{2m-1})z) B_{2m-1}(z) + q_{2m+1}B_{2m-3}(z)$ gives $w_{2m} = b_{2m+1,m} - b_{2m-1,-(m-1)}$, and the result follows from (5.1).

(Case L₈). Comparison of coefficients for z^{-m} in the recursion formula $B_{2m+1}(z) = (z^{-1} + w_{2m} + (v_{2m+1}/v_{2m-1})z) B_{2m-1}(z) + q_{2m+1}z^{-1}B_{2m-2}(z)$ gives $w_{2m} = b_{2m+1, -m} - b_{2m-1, -(m-1)} - q_{2m+1}b_{2m-2, -(m-1)}$, and the result follows from (5.1) and (5.10) (Theorem 5).

6. LAURENT FRACTIONS CORRESPONDING TO GIVEN LAURENT SERIES

We have shown that to every Laurent fraction there corresponds a unique Laurent series $\sum_{p=0}^{\infty} c_p z^{-p} + \sum_{p=1}^{\infty} -c_{-p} z^p$, and this series satisfies the conditions $H_{2m}^{-2m} \neq 0$, $H_{2m+1}^{-2m} \neq 0$, m=0, 1, 2, ... A series which satisfies these conditions is called *definite*. We shall now show that to every definite Laurent series there corresponds a Laurent fraction.

THEOREM 8. Let a definite Laurent series $\sum_{p=0}^{\infty} c_p z^{-p} + \sum_{p=1}^{\infty} -c_{-p} z^{-p}$ be given. Then there exists a unique Laurent fraction $\mathbf{K}_{k=1}^{\infty}(\alpha_k(z)/\beta_k(z))$ corresponding to the series. An index 2m is singular iff $H_{2m}^{-(2m-1)} = 0$, and an index 2m + 1 is singular iff $H_{2m+1}^{-(2m+1)} = 0$. The elements $\alpha_k(z)$, $\beta_k(z)$ of the fraction are fiven by the formulas of Theorems 5–7.

Proof. The uniqueness of the Laurent fraction corresponding to a given Laurent series follows from Theorem 5–7.

We define elements $\alpha_k(z)$, $\beta_k(z)$ by the formulas of Theorems 5-7. The Laurent fraction $K_{k=1}^{\infty}(\alpha_k(z)/\beta_k(z))$ obtained in this way corresponds to a series $\sum_{p=0}^{\infty} \gamma_p z^{-p} + \sum_{p=1}^{\infty} -\gamma_{-p} z^p$. Then the elements $\alpha_k(z)$, $\beta_k(z)$ are given by the formulas of Theorems 5-7, where the Hankel determinants are constructed from the sequence $\{\gamma_p: p=0, \pm 1, \pm 2, ...\}$. It is readily verified that the system of Hankel determinants H_{2m}^{-2m} , H_{2m+1}^{-2m} , $H_{2m+1}^{-(2m+1)}$, $H_{2m}^{-(2m-1)}$ determines uniquely the sequence $\{c_p: p=0, \pm 1, \pm 2, ...\}$ from which it is constructed. Hence $\gamma_p = c_p$, $p=0, \pm 1, \pm 2, ...$, and the result follows.

7. Correspondence between Contractive Laurent Fractions and Positive Definite Laurent Series

We shall call the sequence $\{c_p: p = 0, \pm 1, \pm 2, ...\}$ positive definite if $H_{2m}^{-2m} > 0, H_{2m+1}^{-2m} > 0$ for all m = 0, 1, 2, ...

THEOREM 9. Let the Laurent fraction $K_{k=1}^{\infty}(\alpha_k(z)/\beta_k(z))$ correspond to the Laurent series $\sum_{p=0}^{\infty} c_p z^{-p} + \sum_{p=1}^{\infty} -c_{-p} z^p$. Then the fraction is contractive if and only if the sequence $\{c_p: p=0, \pm 1, \pm 2, ...\}$ is positive definite.

Proof. Assume that the sequence $\{c_p: p=0, \pm 1, \pm 2, ...\}$ is positive definite. If 2m is singular then $(H_{2m}^{-2m})^2 = -H_{2m+1}^{-(2m+1)}H_{2m-1}^{-(2m-1)}$ by (4.4), hence $H_{2m+1}^{-(2m+1)}H_{2m-1}^{-(2m-1)} < 0$ and so $v_{2m-1} \cdot v_{2m+1} < 0$. Similarly if 2m+1 is singular then $(H_{2m+1}^{-2m})^2 = -H_{2m+2}^{-(2m+1)}H_{2m}^{-(2m-1)}$ by (4.5), hence $H_{2m+2}^{-(2m+1)}H_{2m}^{-(2m-1)} < 0$, and so $v_{2m} \cdot v_{2m+2} < 0$. Thus C_0 is satisfied. Furthermore the following relations are seen to hold (in the cases L_1-L_8):

$$q_{2m}v_{2m}v_{2m-1} = \frac{(H_{2m}^{-(2m-1)})^2 H_{2m-2}^{-(2m-2)}}{(H_{2m-1}^{-(2m-1)})^2 H_{2m}^{-2m}} > 0,$$
(7.1)

$$q_{2m}v_{2m} = -\frac{\left(H_{2m}^{-(2m-1)}\right)^2 H_{2m-3}^{-(2m-4)}}{H_{2m-1}^{-(2m-2)} H_{2m-2}^{-(2m-2)} H_{2m}^{-2m}} < 0,$$
(7.2)

$$q_{2m} = -\frac{H_{2m-1}^{-(2m-2)}H_{2m-4}^{-(2m-4)}}{H_{2m-2}^{-(2m-2)}H_{2m-3}^{-(2m-4)}} < 0,$$
(7.3)

$$q_{2m}v_{2m-2} = \frac{H_{2m-1}^{-(2m-2)}H_{2m-3}^{-(2m-4)}}{(H_{2m-2}^{-(2m-2)})^2} > 0,$$
(7.4)

hence $q_{2m}v_{2m} < 0$,

$$q_{2m+1}v_{2m+1}v_{2m} = \frac{(H_{2m+1}^{-(2m+1)})^2 H_{2m-1}^{-(2m-2)}}{(H_{2m}^{-2m})^2 H_{2m+1}^{-2m}} > 0,$$
(7.5)

$$q_{2m+1}v_{2m+1} = -\frac{\left(H_{2m+1}^{-(2m+1)}\right)^2 H_{2m-2}^{-(2m-2)}}{H_{2m}^{-2m} H_{2m-1}^{-(2m-2)} H_{2m+1}^{-2m}} < 0,$$
(7.6)

$$q_{2m+1} = -\frac{H_{2m}^{-2m}H_{2m-3}^{-(2m-4)}}{H_{2m-1}^{-(2m-2)}H_{2m-2}^{-(2m-2)}} < 0,$$
(7.7)

$$q_{2m+1}v_{2m-1} = \frac{H_{2m}^{-2m}H_{2m-2}^{-(2m-2)}}{(H_{2m-1}^{-(2m-2)})^2} > 0,$$
(7.8)

hence $q_{2m+1}v_{2m+1} < 0$.

Thus also the conditions C_1 - C_8 are satisfied, and the Laurent fraction is contractive.

Next assume that the Laurent fraction is contractive. We note that $H_0^0 > 0$, that $H_1^0 > 0$ if $n_1 = 1$, and that $H_1^0 > 0$, $H_2^2 > 0$ if $n_1 = 2$. Let k be given, and assume that $H_0^0 > 0, \dots, H_{2m-3}^{-(2m-4)} > 0$, $H_{2m-2}^{-(2m-2)} > 0$ if $n_{k-1} = 2m-2$, and that $H_0^0 > 0, \dots, H_{2m-2}^{-(2m-2)} > 0$, $H_{2m-1}^{-(2m-2)} > 0$ if $n_{k-1} = 2m-1$.

(1') Let $n_k = 2m$, $n_{k-1} = 2m-1$, $n_{k-2} = 2m-2$. Then by (7.1) and the assumption we get $H_{2m}^{-2m} > 0$.

(2') Let $n_k = 2m$, $n_{k-1} = 2m-1$, $n_{k-2} = 2m-3$. Then by (7.2) and the assumption we get $H_{2m}^{-2m} > 0$.

(3') Let $n_k = 2m$, $n_{k-1} = 2m - 2$, $n_{k-2} = 2m - 4$. Then by (7.3) and the assumption we get $H_{2m-1}^{-(2m-2)} < 0$. From (4.5) it follows that $H_{2m-2}^{-(2m-3)}H_{2m}^{-(2m-1)} < 0$, since $H_{2m-1}^{-(2m-1)} = 0$. This together with $(H_{2m-3}^{-(2m-3)}H_{2m}^{-(2m-1)})/((H_{2m-2}^{-(2m-2)}H_{2m}^{-2m})) = v_{2m} \cdot v_{2m-2} < 0$ and the assumption implies that $H_{2m}^{-2m} > 0$.

(4') Let $n_k = 2m$, $n_{k-1} = 2m-2$, $n_{k-2} = 2m-3$. Then by (7.4) and the assumption we get $H_{2m}^{-(2m-2)} > 0$. As under (3') we conclude that $H_{2m}^{-2m} > 0$.

(5') Let $n_k = 2m + 1$, $n_{k-1} = 2m$, $n_{k-1} = 2m - 1$. Then by (7.5) and the assumption we get $H_{2m+1}^{-2m} > 0$.

(6') Let $n_k = 2m + 1$, $n_{k-1} = 2m$, $n_{k-2} = 2m - 2$. Then by (7.6) and the assumption we get $H_{2m+1}^{-2m} > 0$.

(7') Let $n_k = 2m + 1$, $n_{k-1} = 2m - 1$, $n_{k-2} = 2m - 3$. Then by (7.7) and the assumption we get $H_{2m}^{-2m} > 0$. From (4.4) it follows that $H_{2m+1}^{-(2m+1)}H_{2m-1}^{-(2m-1)} > 0$, since $H_{2m}^{-(2m-1)} = 0$. This together with $(H_{2m+1}^{-(2m+1)}H_{2m-1}^{-(2m-1)})/(H_{2m+1}^{-2m}H_{2m-1}^{-(2m-2)}) = v_{2m+1} \cdot v_{2m-1} < 0$ and the assumption implies that $H_{2m+1}^{-2m} > 0$.

(8') Let $n_k = 2m + 1$, $n_{k-1} = 2m - 1$, $n_{k-2} = 2m - 2$. Then by (7.8) and the assumption we get $H_{2m}^{-2m} > 0$. As under (7') we conclude that $H_{2m+1}^{-2m} > 0$.

It now follows by induction that the sequence is positive definite.

8. MAIN RESULT

Our main results can be collected in the following theorem.

MAIN THEOREM. Correspondence as defined in Section 3 introduces a one-to-one mapping between all Laurent fractions and all definite Laurent series. The contractive Laurent fractions are mapped exactly onto all positive definite Laurent series.

REFERENCES

2. W. B. JONES, O. NJÅSTAD, AND W. J. THRON, Continued fractions and the strong Hamburger moment problem, Proc. London Math. Soc. (3) 48 (1983), 363-384.

^{1.} N. I. AKHIEZER, "The Classical Moment Problem," Hafner, New York, 1955.

- 3. W. B. JONES, O. NJÅSTAD, AND W. J. THRON, Orthogonal Laurent Polynomials and the strong Hamburger moment problem, J. Math. Anal. Appl. 98 (1984), 528-554.
- 4. W. B. JONES AND W. J. THRON, Two-point Padé tables and T-fractions, Bull. Amer. Math. Soc. 83 (1977), 388-390.
- 5. W. B. JONES AND W. J. THRON, "Continued Fractions: Analytic Theory and Applications," Addison-Wesley, Reading, MA, 1980.
- 6. W. B. JONES, W. J. THRON, AND H. WAADELAND, A strong Stieltjes moment problem, Trans. Amer. Math. Soc. 261 (1980), 503-528.
- 7. J. H. MCCABE, A formal extension of the Padé table to include two point Padé quotients, J. Inst. Math. Appl. 15 (1975), 363-372.
- 8. J. H. MCCABE AND J. A. MURPHY, Continued fractions which correspond to power series expansions at two points, J. Inst. Math. Appl. 17 (1976), 233-247.
- 9. O. NJÅSTAD AND W. J. THRON, The theory of sequences of orthogonal L-polynomials, in "Padé Approximants and Continued Fractions" (Haakon Waadeland and Hans Wallin, Eds.), No. 1, pp. 54–91, Det Kongelige Norske Videnskabers Selskrab, Skrifter, 1983.
- 10. O. NJÅSTAD, Solution of the strong Hamburger moment problem by continued fractions, Applied Numerical Mathematics 4 (1988), 351-360.
- A. SRI RANGA, Ĵ-fractions and the strong moment problems, in "Analytic Theory of Continued Fractions," Proceedings (W. J. Thron, Ed.), Pitlochry, Scotland, 1985; Lecture Notes in Mathematics, No. 1199, Springer-Verlag, Berlin/New York, 1986.
- 12. H. S. WALL, "Analytic Theory of Continued Fractions," Van Nostrand, New York, 1948.